
Systems/C++
Compiler Version 2.25

Copyright c© 2020, Dignus, LLC





Systems/C++
C++ Compiler
Version 2.25

i



Copyright c© 2020 Dignus, LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval sys-
tem, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without the prior agreement and written per-
mission of the publisher.

This product includes software developed by the University of California, Berkeley
and its contributors. Portions Copyright c© 1990, 1993 The Regents of the University
of California. All rights reserved.

This product contains software developed by the LLVM project, which contains the
following copyright notice:

Copyright c© 2009-2014 by Saleem Abdulrasool, Dan Albert, Dimitry Andric,
Holger Arnold, Ruben Van Boxem, David Chisnall, Marshall Clow, Jonathan
B Coe, Eric Fiselier, Bill Fisher, Matthew Dempsky, Google Inc., Howard
Hinnant, Hyeon-bin Jeong, Argyrios Kyrtzidis, Bruce Mitchener, Jr., Michel
Morin, Andrew Morrow, Arvid Picciani, Bjorn Reese, Nico Rieck, Jon Roelofs,
Jonathan Sauer, Craig Silverstein, Richard Smith, Joerg Sonnenberger, Stephan
Tolksdorf, Michael van der Westhuizen, Larisse Voufo, Klaas de Vries, Zhang
Xiongpang, Xing Xue, Zhihao Yuan, and Jeffrey Yasskin.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ”Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

This product includes software developed by International Business Machines Cor-
poration, which contains the following copyright notices:

Copyright (c) 1995-2005 International Business Machines Corporation and oth-
ers All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,

ii



copy, modify, merge, publish, distribute, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, provided that
the above copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this permission
notice appear in supporting documentation.

IBM, S/390, zSeries, OS/390, z/OS, MVS, VM, CMS, HLASM, and High Level As-
sembler are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

iii



iv



Contents

How to use this book 1

Systems/C++ Overview 3

Implementation Definitions 5
Implementation limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Basic Data Types and Alignments . . . . . . . . . . . . . . . . . . . . . . 5
Return values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C++ Language Features 9
1998 ANSI Standard C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2011 ANSI Standard C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2014 ANSI Standard C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2017 ANSI Standard C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C++ language extensions accepted . . . . . . . . . . . . . . . . . . . . . . 16
Namespace Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Dependent Name Processing . . . . . . . . . . . . . . . . . . . . . . . 18
Lookup Using the Reference Context . . . . . . . . . . . . . . . . . . 18
Argument-Dependent Lookup . . . . . . . . . . . . . . . . . . . . . . 19

Template Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
int8, int16, int32, int64 . . . . . . . . . . . . . . . . . . . . . . . . . 21

Compiling, Linking and Running Programs 23
Running DCXX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

In OS/390 and z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
In Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
In the UNIX/LINUX environment . . . . . . . . . . . . . . . . . . . 25

Include File Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
On OS/390 or z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
On UNIX, Linux and Windows . . . . . . . . . . . . . . . . . . . . . 27
Header filename mapping ($$HDRMAP) . . . . . . . . . . . . . . . . 27

Description of options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Detailed description of the options . . . . . . . . . . . . . . . . . . . . . . 39

The –D option (define a macro) . . . . . . . . . . . . . . . . . . . . . 39
The –I option (specify additional locations to look for included files) 39

Systems/C++ v



The –iquote dir option (Add dir to the list of directories to examine
for local include files) . . . . . . . . . . . . . . . . . . . . . . 40

The –isystem dir option (Add dir to the list of system include direc-
tories) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

The –idirafter dir option (Add dir to the list of directories to search
after the system include directories) . . . . . . . . . . . . . . 40

The –Sdir option (Add dir to the list of directories to examine for
include files, honoring IBM’s SEARCH semantics) . . . . . . . . 40

The –ofile option (specify the name of the generated output file) . . 41
The –E option (preprocess only) . . . . . . . . . . . . . . . . . . . . 41
The –femitdefs option (include #define values in preprocessor output) 41
The –M[=filename] option (generate a source dependence list) . . . . 42
The –fdep[=filename] option (generate a source dependence list dur-

ing regular compilation) . . . . . . . . . . . . . . . . . . . . . 42
The –g option (debuggable code) . . . . . . . . . . . . . . . . . . . . 42
The –g0 option (Disable debuggable code and debugging information) 43
The –gdwarf option (generate DWARF debugging information) . . . 43
The –gstabs option (generate STABS debugging information) . . . . 43
The –gisd option (generate ISD debugging information) . . . . . . . 43
The –fansi bitfield packing/–fno ansi bitfield packing options (ANSI

rules for bitfield allocation) . . . . . . . . . . . . . . . . . . . 44
The –fc370=version option (specify IBM C++ compatibility) . . . . 44
The –fexportall option (Provide DLL definitions for data/functions) 44
The –fdll=cba and –fdll=nocba options (Enable/disable LE DLL(CALLBACKANY)

support) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
The –fep=name option (specify entry point) . . . . . . . . . . . . . . 45
The –fprol=macro option (specify alternate prologue macro) . . . . . 45
The –fprv=macro option (specify alternate PRV address macro) . . 47
The –fepil=macro option (specify alternate epilogue macro) . . . . . 47
The –lnameaddr and –fno lnameaddr macros (Enable or disable gen-

eration of Logical Name Address info) . . . . . . . . . . . . . 47
The –fopts[=macro] option (Request interesting options noted at top

of generated assembly) . . . . . . . . . . . . . . . . . . . . . . 47
The –fendmacro[=text] option (Specify text to appear before the END

statement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
The –finstrument functions option (Request function beginning /end-

ing instrumentation) . . . . . . . . . . . . . . . . . . . . . . . 48
The –fcode base=N option (specify register to use for addressing code) 49
The –fframe base=N option (specify register to use for addressing

automatic data) . . . . . . . . . . . . . . . . . . . . . . . . . 50
The –freserve reg=N option (reserve register #N) . . . . . . . . . . . 50
The –fwarn disable=N[,N,N-M,...] option (disable emission of warn-

ing(s)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
The –fwarn enable=N[,N,N-M,...] option (reenable disabled warn-

ing(s)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



The –fwarn promote=N[,N,N-M,...] option (promote warning(s) to
error status) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

The –ftrim option (remove trailing blanks from source) . . . . . . . . 51
The –faddh option (add “.h” to #include names) . . . . . . . . . . . 51
The –flowerh option (convert #include names to lower case) . . . . . 51
The –fnosearchlocal option (don’t look in “local” directories) . . . . 51
The –fpreinclude=filename option (#include the named file before

compiling the C++ source file) . . . . . . . . . . . . . . . . . 52
The –flisting[=filename] option (generate a listing) . . . . . . . . . . 52
The –fvtable listing and –fno vtable listing options ((enable/disable

virtual function table information to listing) . . . . . . . . . . 52
The –fpagesize=n option (set the listing page size to n lines) . . . . 52
The –fshowinc and –fno showinc options (enable/disable inc luding

source from #include files in listing) . . . . . . . . . . . . . . 53
The –fstructmap and –fno structmap options (enable/disable includ-

ing struct layout information in the listing) . . . . . . . . . . 53
The –fstructmaphex and –fno structmaphex options (structure layout

information should/shouldn’t be displayed in hex) . . . . . . 53
The –frent option (generate re-entrant code) . . . . . . . . . . . . . . 53
The –fmaxerrcount=N option (limit the number of reported errors) . 53
The –Uname option (undefine predefined #define values) . . . . . . 54
The –fincstripdir option (remove directory components from #include

names) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
The –fincstripsuf option (conditionally remove suffixes from #include

names) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
The –fincrepsuf option (conditionally replace suffixes from #include

names) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
The –fmargins[=m,n] option (specify margins for source lines) . . . . 55
The –fmesg=style option (specify message style) . . . . . . . . . . . 55
The –fasciiout option (char and string constants are ASCII) . . . . . 56
The –fdollar option (alloc dollar sign character in identifier s) . . . . 56
The –fwchar ucs option (indicate that wide character constants are

UCS-2 or UCS-4.) . . . . . . . . . . . . . . . . . . . . . . . . 56
The –fwchar=n option (specify the size of wchar t) . . . . . . . . . . 57
The –fsname=name option (specify section names) . . . . . . . . . . 57
The –fnosname option (allow PLINK to choose unique section names) 57
The –fsnameprefix=char option (specify section name prefix) . . . . 58
The –fieee option (BFP format floating point values and constants) . 58
The –fmrc/–fnomrc options (mainframe or UNIX-style return codes) 59
The –fpatch/–fno patch options (generate a patch area) . . . . . . . 59
The –fpatchmul=n option (alter the size of the patch area) . . . . . 59
The –flinux option (enable Linux/390 and z/Linux code generation) 60
The –fvisibility=setting option (set ELF object symbol visibility) . . 60
The –fsigned char/–funsigned char options (Control if char is signed

or unsigned by default) . . . . . . . . . . . . . . . . . . . . . 61

vii



The –fsuppress vtbl option (suppress generation of C++ vtable in-
formation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The –fforce vtbl option (force generation of C++ vtable information) 61
The –finstantiate=mode option (set the template instantiation mode) 62
The –fdistinct template signatures/–fno distinct template signatures

options (enable/disable distinct template signatures) . . . . . 62
The –fimplicit include/–fno implicit include options (enable/disable

implicit inclusion for template libraries) . . . . . . . . . . . . 62
The –ftempinc[=directory]/–fno tempinc options (enable/disable tem-

plate instantiation method . . . . . . . . . . . . . . . . . . . 63
The –fnonstd qualifier deduction/–fno nonstd qualifier deduction op-

tions (enable/disable non-standard qualifier deduction) . . . . 63
The –guiding decls/–fno guiding decls ioptions (Imply template in-

stantation with a specific declaration) . . . . . . . . . . . . . 63
The –fexceptions/–fno exceptions options (enable/disable support for

C++ exceptions) . . . . . . . . . . . . . . . . . . . . . . . . . 64
The –frtti/–fno rtti options (enable/disable C++ Run-Time Type Info) 64
The –farray new and delete/–fno array new and delete options (en-

able/disable new[] and delete[]) . . . . . . . . . . . . . . . 64
The –fexplicit/–fno explicit options (enable/disable explicit keyword) 65
The –fnamespaces/–fno namespaces options (enable/disable names-

pace support) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
The –fold for init option (variables in for() inits follow pre-ANSI

semantics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
The –fnew for init option (variables in for() inits follow ANSI se-

mantics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
The –fold specializations/–fno old specializations options (enable/dis-

able old-style template specializations) . . . . . . . . . . . . . 67
The –fextern inline/–fno extern inline options (enable/disable extern

inline) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
The –fshort lifetime temps/–flong lifetime temps options (enable/dis-

able long lifetime temporaries) . . . . . . . . . . . . . . . . . 68
The –fbool/–fno bool options (enable/disable bool support) . . . . . 68
The –fwchar t keyword/–fno wchar t keyword options (enable/disable

wchar t support) . . . . . . . . . . . . . . . . . . . . . . . . . 68
The –ftypename/–fno typename options (enable/disable typename

support) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
The –fimplicit typename/–fno implicit typename options (enable/dis-

able implicit template param type determination) . . . . . . 69
The –fdep name/–fno dep name options (enable/disable dependent

name processing) . . . . . . . . . . . . . . . . . . . . . . . . . 69
The –fparse templates/–fno parse templates options (enable/disable

parsing templates) . . . . . . . . . . . . . . . . . . . . . . . . 69
The –fspecial subscript cost/–fno special subscript cost options (en-

able/disable special operator costs) . . . . . . . . . . . . . . . 69

viii



The –falternative tokens/–fno alternative tokens options (enable/dis-
able C++ alternative tokens) . . . . . . . . . . . . . . . . . . 69

The –fenum overloading/–fno enum overloading options (enable/dis-
able enum overloading) . . . . . . . . . . . . . . . . . . . . . 70

The –fconst string literals/–fno const string literals options (enable/dis-
able const strings) . . . . . . . . . . . . . . . . . . . . . . . . 70

The –fimplicit extern c type conversion/–fno implicit extern c type conversion
options (Allow implicit conversions between C and C++ func-
tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

The –fclass name injection/–fno class name injection options (enable/dis-
able class name injection) . . . . . . . . . . . . . . . . . . . . 70

The –farg dependent lookup/–fno arg dependent lookup options (en-
able/disable arg-dependent lookup) . . . . . . . . . . . . . . . 70

The –ffriend injection/–fno friend injection options (enable/disable
friend namespace injection) . . . . . . . . . . . . . . . . . . . 71

The –flate tiebreaker option (avoid the use of qualifiers in overload
resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

The –fearly tiebreaker option (use qualifiers in overload resolution) . 71
The –fnonstd using decl/–fno nonstd using decl options (enable/dis-

able non-standard using) . . . . . . . . . . . . . . . . . . . . 71
The –fvariadic macros/–fno variadic macros options (enable/disable

C99 variadic macros) . . . . . . . . . . . . . . . . . . . . . . . 71
The –fextended variadic macros/–fno extended variadic macros op-

tions (enable/disable GCC variadic macros) . . . . . . . . . . 71
The –fbase assign op is default/–fno base assign op is default options

(enable/disable copy assignment from base) . . . . . . . . . . 72
The –fignore std/–fno ignore std options (enable/disable std names-

pace special treatment) . . . . . . . . . . . . . . . . . . . . . 72
The –version option (print the compiler version number on STDOUT

and exit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
The –famode=val option (specify runtime addressing mode) . . . . . 72
The –march=zN option (enable z/Architecture compilation) . . . . . 73
The –march=esa390 and –march=esa390z options (enable ESA/390

compilation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
The –milp32 option (32-bit compilation) . . . . . . . . . . . . . . . . 74
The –mlp64 option (64-bit compilation) . . . . . . . . . . . . . . . . 74
The –mfp16 and –mfp4 options (enable/disable use of extended FP

registers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
The –mlong-double-128 and –mlong-double-64 options (enable/disable

128-bit long double characteristics) . . . . . . . . . . . . . . . 75
The –mmvcle and –mno-mvcle options (enable/disable use of the MV-

CLE/CLCLE instruction) . . . . . . . . . . . . . . . . . . . . 76
The –mdistinct-operands and –mno-distinct-operands options (en-

able/disable use of distinct-operands facility instructions) . . 76
The –mextended-immediate and –mno-extended-immediate options

(enable/disable use of extended-immediate facility instructions) 76

ix



The –mload-store-on-condition and –mno-load-store-on-condition op-
tions (enable/disable use of load-store-on-condition facility in-
structions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

The –mhfp-multiply-add and –mno-hfp-multiply-add options (enable/disable
use of HFP multiply-and-add facility instructions) . . . . . . 77

The –mlong-displacement and –mno-long-displacement options (en-
able/disable use of long-displacement facility instructions) . . 77

The –mgeneral-instructions-extension and –mno-general-instructions-extension
options (enable/disable use of general-instructions-extension
facility instructions) . . . . . . . . . . . . . . . . . . . . . . . 77

The –mhigh-word-facility and –mno-high-word-facility options (en-
able/disable use of high-word facility instructions) . . . . . . 77

The –mhfp-extensions and –mno-hfp-extensions options (enable/disable
use of HFP extensions facility instructions) . . . . . . . . . . 78

The –finline[=x[:y:z]] and –fnoinline options (Control inlining opti-
mization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

The –O[n] option (Set optimization level) . . . . . . . . . . . . . . . 79
The –fasmcomm=mode option (control the comments in the assembly

output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
The –asmlnno option (Include line numbers in C source comments in

generated assembly) . . . . . . . . . . . . . . . . . . . . . . . 79
The –fmin lm reg=val option (Set the minimum number of registers

in one LM instruction) . . . . . . . . . . . . . . . . . . . . . . 80
The –fmin stm reg=val option (Set the minimum number of registers

in one STM instruction) . . . . . . . . . . . . . . . . . . . . . . 80
The –fflex option (Enable FLEX/ES-specific optimizations) . . . . . 80
The –frsa[=size] option (Specify the amount of space the compiler

reserves for the Register Save Area) . . . . . . . . . . . . . . 80
The –fpack=val option (Specify a default maximum structure align-

ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
The –fpic option (Generate position independent code, small GOT) . 81
The –fPIC option (Generate position independent code for Linux &

z/TPF, large GOT) . . . . . . . . . . . . . . . . . . . . . . . 81
The –ffpremote/–ffplocal options (function pointers are remote/local) 81
The –fxplink option (Use eXtra Performance Linkage) . . . . . . . . 82
The –fc370 extended option (Enable C/370 LANGLVL(EXTENDED)

compatibility mode) . . . . . . . . . . . . . . . . . . . . . . . 82
The –fuser sys hdrmap option (Use user $$HDRMAP for system #includes) 82
The –fevents=filename option (Emit an IBM-compatible events listing) 82
The –fnamemangling=mode option (Select the name mangling mode

to use for IBM compatibility) . . . . . . . . . . . . . . . . . . 83
The –fenum=val option (Specify default enumeration size) . . . . . . 84
The –ftest[=name] option (Enable a separate test csect) . . . . . . . 84
The –fprolkey=key option (Append a global prologue key) . . . . . . 84
The –fcommon and –fnocommon options (Enable/disable common

linkage for uninitialized globals) . . . . . . . . . . . . . . . . 84

x



The –fsave dsa over call/–fno save dsa over call options (Control if
DSA bytes are saved and restored over alternate linkage call) 84

The –fdfe and –fnodfe options (Enable/disable dead function elimi-
nation.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

The –fmapat and –fnomapat options (Enable/disable mapping ’@’ to
’ ’ in external symbol names) . . . . . . . . . . . . . . . . . . 85

The –fat option (Support @-operator in expressions) . . . . . . . . . 85
The –fctrlz is eof and –fno ctrlz is eof options (Enable/disable treat-

ing control-Z as an EOF character) . . . . . . . . . . . . . . . 86
The –fpermissive friend and –fno permissive friend options (Enable/disable

friend declarations on private members) . . . . . . . . . . . . 86
The –ffnio/–fno fnio options (enable/disable function names in ob-

jects for debugging) . . . . . . . . . . . . . . . . . . . . . . . 86
The –fhide skipped/–fshow skipped options (enable/disable omission

of preprocessor-skipped lines in listing) . . . . . . . . . . . . . 86
The –fsigned bitfields and –funsigned bitfields options (set default

signedness of bitfields with bare types) . . . . . . . . . . . . . 87
The –v option (print version information) . . . . . . . . . . . . . . . 87
The –fsched inst, –fsched inst2 and –fno sched inst options (control

the behavior of the instruction scheduler) . . . . . . . . . . . 87
The –fxref and –fno xref options (enable/disable cross-reference listing 88
The –frestrict and –fno restrict options (enable/disable C99-style restrict

keyword) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
The –fcpp98 option (specify only C++98 will be accepted) . . . . . 88
The –fcpp11 option (enable support for C++11 language features) . 88
The –fcpp14 option (enable support for C++14 language features) . 88
The –fcpp17 option (enable support for C++17 language features) . 89
The –funrestricted unions and –fno unrestricted unions options (En-

able/disable the C++11 unrestricted unions feature) . . . . . 89
The –fimplicit noexcept and –fno implicit noexcept options (Enable/disable

the implicit C++11 exception specifications) . . . . . . . . . 89
The –fstatic anon names and –fno static anon names options (En-

able/disable forcing members of the unnamed namespace to
static) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The –fsource enc=utf8 and –fsource enc=ascii options (Select source
character encoding) . . . . . . . . . . . . . . . . . . . . . . . 89

The –fdwarf extern and –fno dwarf extern options (enable/disable
generation of DWARF data for extern variables) . . . . . . . 90

Assembling the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Using HLASM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Using Systems/ASM . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Linking Assembled Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A note on re-entrant (RENT) programs . . . . . . . . . . . . . . . . 93
Using PLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Other useful utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
GOFF2XSD — convert GOFF format objects to XSD format . . . . 96

xi



Linking programs on z/OS and OS/390 . . . . . . . . . . . . . . . . . . . 96
Running programs on z/OS and OS/390 . . . . . . . . . . . . . . . . . . . 99

DCXX Advanced Features and C++ Extensions 101
Predefined macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
constructor/destructor attributes . . . . . . . . . . . . . . . . . . 102
packed attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
mode attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
weak attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
deprecated attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 104
visibility attribute . . . . . . . . . . . . . . . . . . . . . . . . . . 105

FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
The rent and norent qualifiers . . . . . . . . . . . . . . . . . . . . . . . 105

bit sizeof and bit offsetof operators . . . . . . . . . . . . . . . . . . . . 106
Inline Assembly language support . . . . . . . . . . . . . . . . . . . . . . . 106

register(nn) — Type specifier. . . . . . . . . . . . . . . . . . . . . . 107
asm [n] ... — Inline assembly source . . . . . . . . . . . . . . . . . 107
asm(“...”:output:input:clobber) — GCC-style inline assembly source 109

The @ operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
asm (“name”) qualifier on function declarations . . . . . . . . . . . . . 114
builtin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

builtin alloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
builtin bswap16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
builtin bswap32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
builtin bswap64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
builtin prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
builtin memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
builtin memset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
builtin memcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
builtin strcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
builtin strlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strrchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strncat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strncmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strncpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
builtin strpbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin fabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin fabsf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin fabsl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin labs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xii



builtin popcount . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin popcountl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
builtin popcountll . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin frexp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin frexpf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin frexpl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin huge val . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin huge valf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin huge vall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin inf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
builtin inff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin infl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin nan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin nanf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin nanl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin nans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
builtin nansf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
builtin nansl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

atomic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
atomic load n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
atomic load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
atomic store n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
atomic store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
atomic exchange n . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
atomic exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
atomic compare exchange n . . . . . . . . . . . . . . . . . . . . . . 121
atomic compare exchange . . . . . . . . . . . . . . . . . . . . . . . 122
atomic OP fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
atomic fetch OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
atomic test and set . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
atomic clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
atomic ... fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
atomic ... lock free . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

#pragma compiler directives . . . . . . . . . . . . . . . . . . . . . . . . . 123
#pragma options(opt[,opt]...) . . . . . . . . . . . . . . . . . . . . . . 123
#pragma prolkey(identifier, “key”) . . . . . . . . . . . . . . . . . . . 124
#pragma epilkey(identifier, “key”) . . . . . . . . . . . . . . . . . . . 124
#pragma map(identifier, “name”) . . . . . . . . . . . . . . . . . . . 124
#pragma weakalias(identifier, “name”) . . . . . . . . . . . . . . . . . 124
#pragma noinline(identifier) . . . . . . . . . . . . . . . . . . . . . . 125
#pragma error “text” . . . . . . . . . . . . . . . . . . . . . . . . . . 125
#pragma warning “text” . . . . . . . . . . . . . . . . . . . . . . . . . 125
#pragma eject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
#pragma page(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
#pragma pagesize(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



#pragma showinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
#pragma noshowinc . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
#pragma pack(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
#pragma weak(identifier) . . . . . . . . . . . . . . . . . . . . . . . . 127
#pragma ident “str” . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
#pragma comment(user, “str”) . . . . . . . . . . . . . . . . . . . . . 127
#pragma enum(enum size) . . . . . . . . . . . . . . . . . . . . . . . 128
#pragma csect(section, “name”) . . . . . . . . . . . . . . . . . . . . 128

extern “ALIGN4” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
extern “OS” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
extern “PLI” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
64-bit arithmetic — long long . . . . . . . . . . . . . . . . . . . . . . . . . 130
C preprocessor extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

#warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
#include next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
#ident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Remote function pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Special “built-in” implementations for common C library functions. . . . . 133

Programming for z/Architecture 135
z/Architecture instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 135
64-bit z/Architecture programming model . . . . . . . . . . . . . . . . . . 135
Parameter passing and return values. . . . . . . . . . . . . . . . . . . . . . 136
AMODE and address calculations . . . . . . . . . . . . . . . . . . . . . . 137

ptr64 qualifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
ptr31 qualifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Systems/C++ z/Architecture library . . . . . . . . . . . . . . . . . . . . . 140

Programming for OpenEdition 143

Programming for MVS 3.8 145

IBM C++ Compatibility Mode 147
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
How Systems/C++ differs from IBM C++ . . . . . . . . . . . . . . . . . 147
Differences from Systems/C++ . . . . . . . . . . . . . . . . . . . . . . . . 148
The –fansi bitfield packing option . . . . . . . . . . . . . . . . . . . . . . . 148
Assembling with Systems/ASM assembler . . . . . . . . . . . . . . . . . . 148
Pre-Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xiv



Customizing DCXX-generated Assembly Source 153
Specifying alternate Entry/Exit macros . . . . . . . . . . . . . . . . . . . 153
Adding keywords to prologue/epilogue macros . . . . . . . . . . . . . . . . 155

#pragma prolkey(identifier, “key-string”) . . . . . . . . . . . . . . . 155
#pragma epilkey(identifier, “key-string”) . . . . . . . . . . . . . . . 155

Specifying an alternate base register . . . . . . . . . . . . . . . . . . . . . 155
Specifying an alternate frame register . . . . . . . . . . . . . . . . . . . . 155

Using the Systems/C Library Direct-CALL interface 157

Debugging Systems/C++ Programs 159
Accessing symbols in a debugging session . . . . . . . . . . . . . . . . . . 159
Forcing a dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Compiling for Linux/390, z/Linux and z/TPF 161
The –flinux option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Using Linux/390 and z/Linux system #include files . . . . . . . . . . . . 162
Using z/TPF #include files . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Assembling Linux/390, z/Linux or z/TPF assembler source . . . . . . . . 163

Using the Linux/390 or z/Linux as command . . . . . . . . . . . . . 164
Using the gcc driver to assemble . . . . . . . . . . . . . . . . . . . . 164

Linking on Linux/390 and z/Linux . . . . . . . . . . . . . . . . . . . . . . 165
Example Linux/390 compile and link . . . . . . . . . . . . . . . . . . . . . 166
Using DCXX for z/TPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Using DCXX for Linux on other hosts . . . . . . . . . . . . . . . . . . . . 167

Systems/C C Library 169

Systems/C++ C++ Library 171

License Information File 173

Run-time support for exceptions 175
Systems/C++-style exceptions . . . . . . . . . . . . . . . . . . . . . . . . 175

Exception Handling Table . . . . . . . . . . . . . . . . . . . . . . . . 175
Runtime support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

ASCII/EBCDIC Translation Table 179

xv



xvi



How to use this book

This book describes the Systems/C++ compiler, DCXX. DCXX is used to compile
C++ source code, producing assembly language source. This book describes how to
run DCXX, how to assemble the generated output and special language features
DCXX provides.

To learn more about the run-time environment, refer to the Systems/C C Library
manual.

Systems/C++ also includes several utility programs used to manage the process of
building OS/390 programs. For more information regarding these utilities, see the
Systems/C Utilities manual.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/C++ 1



The Systems/C++ C++ Compiler

DCXX

2 Systems/C++



Systems/C++ Overview

Systems/C++ is a C++ language compiler for the 390 and zSeries architectures. It
is unique in that its output is 390 assembly source code. Because of this, it provides
features not typically found in C++ compilers for the mainframe.

Some of its features include:

• ANSI C++17 compliant compiler, including full support for templates, excep-
tions, RTTI and other modern C++ compiler features.

• Direct inline assembly source.

• IBM C++ compatibility mode when used with the Systems/ASM DASM
assembler.

• GCC (g++) 4.x compatibility, including the C++ ABI used by g++.

• Recognized by IBM as supported for z/TPF.

• Support for 64-bit arithmetic (long long)

• C++ language extensions, including:

– Support for Binary Floating Point ( Ieee float) and Hexadecimal Float-
ing Point ( Hexadec float)

– Built-in implementations for common C library functions

– Support for remote function pointers (and the local and remote
function pointer type qualifiers)

• Systems/C C++ library

– The LLVM Project’s libc++ STL and I/O library

– Uses the distribution-provided C++ library under Linux or z/TPF

DCXX, the C++ compiler component of Systems/C++, generates assembly lan-
guage ready to assemble on the mainframe.

Systems/C++ 3



Systems/C++ also supports cross-hosted development, where the compilation of
C++ source occurs on a workstation. Systems/ASM can then be run on a work-
station to translate the resulting assembly language source into mainframe object
decks. Linking can also occur on a workstation (using PLINK), or the objects may
be transferred to the mainframe for linking and binding.

4 Systems/C++



Implementation Definitions

Implementation limits

What follows is a description of the compiler limits. In each case, the Systesm/C++
compiler, DCXX, meets or exceeds the requirements for ANSI C++. For most
items the practical limit is imposed by the amount of memory available at compila-
tion time.

When using the Systems/ASM assembler, DASM, to assemble the generated code,
the character limit for external identifiers is 4096 characters. Note that C++ identi-
fiers are typically augmented with type information to support symbol overloading.
The 4096 character limit includes any characters added to the name. This limit is
imposed by the Systems/ASM assembler.

The Linux assembler, as, has no limit on the length of external identifiers.

Basic Data Types and Alignments

The default signedness for char is unsigned, making char equivalent to unsigned
char.

The type char, either signed or unsigned, is 8 bits long, and aligned on 8 bit (1
byte) boundaries.

The type short, either signed or unsigned, is 16 bits long, and aligned on 16 bit
(2 byte) boundaries.

The type int, either signed or unsigned, is 32 bits long and aligned on 32 bit
(fullword) boundaries.

The type long, either signed or unsigned, is 32 bits long and aligned on 32 bit
(fullword) boundaries. If the –mlp64 option is enabled, long is is 64 bits long and
aligned on 64 bit (doubleword) boundaries.

The type long long, either signed or unsigned, is 64 bits long and aligned on 64
bit (doubleword) boundaries.

Systems/C++ 5



The type float is 32 bits long and aligned on 32 bit (fullword) boundaries. If the
–fieee option is enabled, floating point constants and values are in IEEE format,
otherwise they are in IBM HFP format.

The type double is 64 bits long and aligned on 64 bit (doubleword) boundaries,
except in a formal parameter list, where double is aligned on 32 bit boundaries for
MVS, z/OS, IBM compatibility -m ode, CMS and VSE. Linux/390, z/Linux and
z/TPF alignments follow the rules of t he appropriate Application Binary Interface.

The type long double is 128 bits long and aligned on 64 bit (doubleword) bound-
aries. The –mlong-double-64 option can be specified, in which case the long double
type is treated the same as the double type.

Each of the floating point types can be modified by the keywords Ieee or Hexadec,
to select either the IEEE BFP or IBM HFP format, respectively. For example, Ieee
float or Hexadec float. If the format is not specified, then the default according
to the –fieee command-line option is applied.

Bitfields are allocated left-to-right within the field, and may be signed or unsigned.
A bitfield is considered unsigned unless explicitly declared signed. Bitfields may
cross storage boundaries. The –fansi bitfield packing option can alter the packing of
bitfields.

By default, enumerations have the type signed int. The –fenum=size and
–fc370=version options can alter this behavior to tailor enumeration sizes.

If –mlp64 is specified, pointers are 64 bits long and aligned on 64 bit (doubleword)
boundaries. If –milp32 is specified, pointers are 32 bits long and aligned on 32 bit
(fullword) boundaries. Pointers are assumed to be “clean”, in the sense that the
upper bits are assumed to be zero as indicated by the runtime addressing mode.

Return values

When returning values in code compiled for z/TPF or Linux (the –fztpf or –flinux
option was specified), the compiler follows the Linux (either 64-bit or 32-bit) con-
ventions defined in the appropriate Linux Elf Applications Binary Interface (ABI).
When returning values in code compiled in IBM Compatibility mode, the compiler
follows the Language Environment return conventions.

The following describes the return conventions for the default mode of operation
in the compiler, which are also the conventions used in the Systems/C runtime
environment.

Integral values are returned in register 15 (R15.) When –mlp64 is specified registers
15 and 0 (R15+R0) are used for the 64 bit long long data type, with the most
significant bits placed in register 15.

6 Systems/C++



Note that integral values smaller than 32 bits are promoted to the full 32 bit value
for returning. The upper bits of register 15 will be appropriately set based on the
signedness of the return type. Then the –mlp64 option is specified, values smaller
than 64 bits are promoted to the full 64 bit value for returning in the register.

Float, double and long double floating point values are returned in floating point
register 0 (FP0) or the register pair 0,2 (FP0,FP2) for long double values. An HFP
float value when (–fieee is not specified, or the type is explicitly Hexadec float)
will always be promoted to double to fill the entire register. An IEEE float value
is returned as a 32-bit IEEE value in floating pointer register 0 (FP0).

Structure values are returned via a parameter inserted at the beginning of the pa-
rameter list. This parameter points to space allocated by the calling function.

Systems/C++ 7



8 Systems/C++



C++ Language Features

1998 ANSI Standard C++

When –fcpp98 is specified on the commandline, Systems/C++ accepts the entire
C++ language as defined by the ISO/IEC 14882:1998 standard, with the following
exceptions:

• The export keyword for templates is not implemented

• A partial specialization of a class member template cannot be added outside
of the class definition.

The ANSI C++ standard adds many features above tradition C++ defined in
“The Annotated C++ Reference Manual” by Ellis and Stroustrup, the ARM. Sys-
tems/C++ implements the ANSI C++ standard. The following features are imple-
mented in Systems/C++ and are not found in the ARM definition:

• The dependent statement of an if, while, do-while, or for is considered to
be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first operand
of a “?” operator, or as an operand of the “&&”, “||”, or “!” operators may
have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted in the ARM.

• Qualified names are allowed in elaborated type specifiers.

• A global-scope qualifier is allowed in member references of the form x.::A::B
and p->::A::B.

• The precedence of the third operand of the “?” operator is changed.

• If control reaches the end of the main() routine, and main() has an integral
return type, it is treated as if a return 0; statement were executed.

Systems/C++ 9



• Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

• A functional-notation cast of the form A() can be used even if A is a class
without a (nontrivial) constructor. The temporary created gets the same
default initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when
taking the address of a function.

• Template friend declarations and definitions are permitted in class definitions
and class template definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have nontype template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions such as conversion from T** to T const * const *
are allowed.

• Digraphs are recognized.

• Operator keywords (e.g., and, bitand, etc.) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar t is recognized as a keyword and a distinct type.

• bool is recognized.

• RTTI (run-time type information), including dynamic cast and the typeid
operator, is implemented.

• Declarations in tested conditions (in if, switch, for, and while statements)
are supported.

• Array new and delete are implemented.

• New-style casts (static cast, reinterpret cast, and const cast) are im-
plemented.

• Definition of a nested class outside its enclosing class is allowed.

• mutable is accepted on nonstatic data member declarations.

• Namespaces are implemented, including using declarations and directives.
Access declarations are broadened to match the corresponding using declara-
tions.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

10 Systems/C++



• explicit is accepted to declare non-converting constructors.

• The scope of a variable declared in the for-init-statement of a for loop is
in the scope of the loop (not the surrounding scope.)

• Member templates are implemented.

• The new specialization syntax (using “template <>”) is implemented.

• Cv-qualifiers are retained on rvalues (in particular, on function return values.)

• The distinction between trivial and nontrivial constructors has been imple-
mented, as has the distinction between PODs and non-PODs within trivial
constructors.

• The linkage specification is treated as part of the function type (affecting
function overloading and implicit conversion.)

• extern inline functions are supported, and the default linkage for inline
functions is external.

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

• An array allocated via a placement new can be deallocated via delete.

• Covariant return types on overriding virtual functions are supported.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

• Partial ordering of function templates is implemented.

• Function declarations that match a function template are regarded as inde-
pendent functions, not as “guiding declarations” that are instances of the
template.

• It is possible to overload operators using functions that take enum types and
no class types.

• Explicit specification of function template arguments is supported.

• Unnamed template parameters are supported.

• The new lookup rules for member references of the form x.A::B and p->A::B
are supported.

• The notation ::template (and ->template, etc.) is supported.

• In a reference of the form f()->g(), with g a static member function, f() is
evaluated, and likewise for a similar reference to a static data member. The
ARM specifies that the left operand is not evaluated in such cases.

Systems/C++ 11



• enum types can contain values larger than can be contained in an int.

• Default arguments of function templates and member functions of class tem-
plates are instantiated only when the default argument is used in a call.

• String literals and wide string literals have const type.

• Class name injection is implemented.

• Argument-dependent (Koenig) lookup of function names is implemented.

• Class and function names declared only in unqualified friend declarations are
not visible except for functions found by argument-dependent lookup.

• A void expression can be specified on a return statement in a void function.

• Function-try-blocks, i.e. try-blocks that are the top-level statements of func-
tions, constructors, or destructors, are implemented.

• Universal character set escapes (e.g., \uabcd) are implemented.

• On a call in which the expression to the left of the opening parenthesis has class
type, overload resolution looks for conversion functions that can convert the
class object to pointer-to-function types, and each such pointed-to “surrogate
function” type is evaluated alongside any other candidate functions.

• Dependent name lookup in templates is implemented. Nondependent names
are looked up only in the context of the template definition. Dependent
names are also looked up in the instantiation context, via argument-dependent
lookup.

2011 ANSI Standard C++

Systems/C++ accepts the entire C++ language as defined by the ISO/IEC 14882:2011
standard, known as C++11. C++11 is accepted by default, but can be disabled
with –fcpp98 option.

The following enhancements over C++98 are supported:

• The >> token can be used to indicate two closing angle brackets, in addition
to the right-shift operator.

• The static assert declaration is supported.

• The friend specifier can indicate non-class types.

• Local and anonymous types can be template parameters.

• Mixed string literal concatenations are supported.

12 Systems/C++



• C99 preprocessor extensions, including variadic macros, are supported.

• C99-style Pragma is supported.

• func string is defined.

• Trailing comma in enum is accepted.

• Constants too large for long are now long long.

• extern template can be used to suppress instantiation.

• typename can appear outside of a template.

• auto is a valid type specifier.

• Trailing return type syntax (func() -> type) is supported.

• The decltype operator (a standardized replacement for the typeof extension)
is supported.

• Scoped enumeration types (enum class) are supported.

• Lambda functions (closures) are supported (but std::function is not).

• Rvalue references (&&) are supported.

• Reference-qualifiers on implicit this argument are supported.

• Functions can be assigned to delete or to default to control automatic gen-
eration of special member functions and cast operations.

• Default move constructors and move assignment operators are generated.

• Explicit conversion functions can be supplied.

• The sizeof, typeid, and decltype operators can refer to non-static data
members of classes.

• The nullptr keyword is supported.

• Certain declarator attributes can occur in double square brackets ([[...]]).

• The final keyword may appear on class types and virtual member functions.

• Alias declarations (with using) are supported.

• Variadic templates are supported.

• The char16 t and char32 t types are supported, along with their matching
u’’/u""/U’’/U"" literals.

• Access checking for base classes is performed in the context of the class being
defined.

• inline namespace is supported.

Systems/C++ 13



• Initializer lists (type var{...};, etc.) are supported.

• The noexcept specifier and operator are supported (influenced by –fimplicit noexcept).

• Range-based for loops (for (auto i : container)) are supported.

• Initializers can be provided for non-static class data members.

• The constexpr specifier is supported.

• Unrestricted unions are supported (controlled by –funrestricted unions).

• Delegating constructors are supported.

• Raw strings (R"(...)") and UTF-8 strings (u8"...") are supported.

2014 ANSI Standard C++

Systems/C++ accepts the entire C++ language as defined by the ISO/IEC 14882:2014
standard, known as C++14. Use the –fcpp14 option to enable support for C++14
(C++11 is accepted by default).

C++14 provides the following enhancements over C++11:

• Binary literals (such as 0b1010) are accepted.

• Function return types can be deduced (auto as a return type).

• Lambdas can capture expressions as well as variables.

• Generic lambdas (auto as a parameter type) are accepted.

• Accept more statements inside of a constexpr function.

• Member initializers in classes.

• [[deprecated]] attribute is accepted.

• Multiple conversion functions in a class can be defined, with overload resolu-
tion selecting which one will be used.

• Apostrophes are ignored in numeric literals.

• Variable templates.

• Sized deallocation.

14 Systems/C++



2017 ANSI Standard C++

Systems/C++ accepts the entire C++ language as defined by the ISO/IEC 14882:2017
standard, known as C++17. Use the –fcpp17 option to enable support for C++17
(C++11 is accepted by default).

The following enhancements over C++14 are supported:

• [[...]] attributes on namespaces and enumerators.

• Nested namespace definitions.

• u8 character literals.

• Extended static assert.

• New rules for auto deduction from compound constant initializers.

• Allow typename in template template parameter list.

• Remove deprecated register keyword and operator++(bool).

• has include to check for #include file availability.

• New attributes: [[fallthrough]], [[nodiscard]], [[maybe unused]].

• Generalized range-based for statement.

• Hexadecimal floating-point literals (were previously accepted by DCXX as
an extension).

• using attribute namespaces without repetition.

• Standard and non-standard attributes.

• Structured bindings (returning a tuple).

• if and switch statements with embedded initializers.

• Fold expressions (apply a binary operator to a parameter pack).

• Lambda expressions within constexpr expressions.

• Lambda capture of *this by value.

• if statement with explicitly constexpr controlling expression.

• Exception specification as part of function type.

• operator new now accepts an alignment argument to honor C++11 alignas
keyword.

• inline variables.

Systems/C++ 15



• Construction rules for enum class values.

• Constant evaluation for all non-type template arguments.

• Initialization from prvalues may elide copy or move constructors.

• Template deduction on constructors.

C++ language extensions accepted

As well as the ANSI C++ standard, Systems/C++ accepts the following common
C++ language extensions:

• A friend declaration for a class may omit the class keyword:

class B;
class C {

friend B; // Should be "friend class B"
};

• Constants of scalar type may be defined within classes (this is an old form;
the modern form uses an initialized static data member):

class A {
const int size = 10;

};

• In the declaration of a class member, a qualified name may be used:

struct A {
int A::f(); // Should be int f()

};

• The preprocessing symbol c plusplus is defined as well as cplusplus.

• Except in IBM compatibility mode, implicit type conversion between a pointer
to an extern "C" function and a pointer to an extern "C++" function is
permitted. Here’s an example:

extern "C" void f(); // f’s type has extern "C"
// linkage

void (*fp) () // fp points to an extern
// "C++" function

= &f; // error in IBM mode.

In z/TPF, Linux and Systems/C++ mode (non IBM compatible mode), this
extension is allowed because C and C++ functions share the same calling
convention.

This extension is controlled by the –fimplicit extern c type conversion option.

16 Systems/C++



• A “?” operator whose second and third operands are string literals or wide
string literals can be implicitly converted to char * or wchar t *. (Recall that
in C++ string literals are const. There is a deprecated implicit conversion
that allows conversion of a string literal to char *, dropping the const. That
conversion, however, applies only to simple string literals. Allowing it for the
result of a ? operation is an extension.)

char *p = x ? "abc" : "def";

• Nonstatic local variables of an enclosing function can be referenced in a non-
evaluated expression (e.g., a sizeof expression) inside a local class. A warning
is issued.

• The long long and unsigned long long types are accepted.

• Integer constants suffixed by LL are given the type long long, and those
suffixed by ULL are given the type unsigned long long (any of the suffix
letters may be written in lower case.)

• The specifier %lld is recognized in printf and scanf formation strings.

• The long long types are accommodated in the usual arithmetic conversions.

• Bit fields may have base types that are enums or integral types besides int
and unsigned int. This matches A.6.5.8 in the ANSI Common Extensions
appendix.

• The last member of a struct may have an incomplete array type. It may not
be the only member of the struct (otherwise, the struct would have zero size.)
This is allowed only if the structure is “C-like”.

• An extern array may have an incomplete class, struct, union, or enum type
as its element type. The type must be completed before the array is sub-
scripted (if it is).

• enum tags may be incomplete: one may define the tag name and resolve it (by
specifying the brace-enclosed list) later.

• The values of enumeration constants may be given by expressions that evaluate
to unsigned quantities that fit in the unsigned int range but not in the int
range. A warning is issued for suspicious cases.

• An extra comma is allowed at the end of an enum list.

• The final semicolon preceding the closing } of a struct or union specifier may
be omitted. A warning is issued.

• A label definition may be immediately followed by a right brace. (Normally,
a statement must follow a label definition.) A warning is issued.

• An empty declaration (a semicolon with nothing before it) is allowed. A
remark is issued.

Systems/C++ 17



• An initializer expression that is a single value and is used to initialize an
entire static array, struct or union need not be enclosed in braces. ANSI C++
requires the braces.

• Benign redeclarations of typedef names are allowed. That is, a typedef name
may be redeclared in the same scope as the same type.

• A pointer to void may be converted to or from a pointer to a function type.

• The nonstandard preprocessing directive #include next is supported. This
is a variant of the #include directive. It searches for the named file only in
the locations on the search path that follow the location in which the current
source file (the one containing the #include next directive) is found.

Namespace Support

Namespaces are enabled by default, unless the –fno namespaces option is used. The
Systems/C++ library also assumes namespaces are supported.

When doing name lookup in a template instantiation, some names must be found in
the context of the template definition while others may also be found in the context
of a template instantiation. Systems/C++ implemented two different instantiation
lookup algorithms: the one mandated by the C++ standard (referred to as “depen-
dent name lookup”), and the one that existed before dependent name lookup was
implemented.

Dependent name lookup is done when the –fdep name option is specified.

Dependent Name Processing

When doing dependent name lookup, Systems/C++ implements the instantiation
name lookup rules specified in the ANSI C++ standard. This processing requires
that nonclass prototype instantiations be done. This in turn requires that the code
be written using the typename and template keywords as required by the standard.

Lookup Using the Reference Context

When not using dependent name lookup, Systems/C++ uses a name lookup algo-
rithm that approximates the two-phase lookup rule of the standard, but does so in
such a way that allows most previously existing code to compile.

When searching for a name as part of a template instantiation, but not in the local
context of the instantiation, the search is performed in a synthesized instantiation
context that uses names from the context of the template definition and names from
the context of the template instantiation. For example:

18 Systems/C++



namespace N {
int g(int);
template <class T> struct A {

T f(T t) return g(t);
T f() return x;

};
}

namespace M {
int x = 99;
double g(double);

N::A<int> ai;
int i = ai.f(0); // N::A<int>::f(int)

// calls N::g(int)
int i2 = ai.f(); // N::A<int>::f()

// returns 0 (= N::x)

N::A<double> ad;
double d = ad.f(0); // N::A<double>::f(double)

// calls M::g(double)
double d2 = ad.f(); // N::A<double>::f()

// also returns 0 (= N::x)
}

The search of names in template instantiation does not conform to the rules in the
standard in the following respects:

• Although only names from the template definition context are considered for
names that are not functions, the lookup is not limited to those names visible
at the point at which the template was defined.

• Functions from the context in which the template was referenced are consid-
ered for all function calls in the template. Functions from the reference context
should only visible for “dependent” function calls.

Argument-Dependent Lookup

When argument-dependent lookup is enabled, functions made visible using argu-
ment-dependent lookup overload with those made visible by normal lookup. The
standard requires that this overloading occur even when the name found by normal
lookup is a block extern declaration. Systems/C++ performs this overloading, but
in default mode, argument-dependent lookup is suppressed when the normal lookup
finds a block extern.

Systems/C++ 19



This means a program can have different behavior, depending on whether it is
compiled with or without argument-dependent lookup, even if the program makes
no use of namespaces. For example:

struct A { };
A operator+(A, double);
void f() {

A a1;
A operator+(A, int);
a1 + 1.0; // calls operator+(A, double) with

} // arg-dependent lookup enabled,
// but otherwise calls
// operator+(A, int);

Template Instantiation

The C++ language defines the idea of templates. A template is a description of
a data structure, or a function that is an example for an entire group of possible
data types or functions. The template descriptions allows the type or function to
be altered based on the specified template parameters. For example, in C++, a
generic linked-list data structure could be implemented as templates — with the
types of the values the linked-list contains parameterized. In the source, there
could be List<int>, for a linked list of integers and List<double> for a linked
list of floating point values. Based on the definition supplied in the source, the
compiler provides each actual function or data type of a template — instantiating
the template.

The instantiation of a class template is always done as soon as it is needed during the
compilation. However, the instantiation of template functions, member functions
of template classes, and static data members of template classes can be deferred.
Allowing the deferral of these template entities is preferable, to reduce redundant
definitions of data or functions, or to allow the program to specify which source
should contain the instantiation (via a specialization.) Also, the C++ standard
specifies that unreferenced template functions should not be compiled.

These instantiation requirements dictate that the compiler cannot be responsible
for instantiation, as the decision has to be performed after examination of the entire
program.

Systems/C++ provides mechanisms that can perform automatic instantiation at
link time for Linux/390 and IBM compatibility mode. In normal mode, Systems/C++
allows for various options to assist the programmer. There are four instantiation
modes, specified by the –finstantiate=mode option:

none Do not automatically create instantiations of any template enti-
ties.

20 Systems/C++



used Instantiate those template entities that were used in the compi-
lation. This will include all static data members for which there
are template definitions. This is the default when –flinux is spec-
ified. The compiler will generate the appropriate linker directives
to ensure that any duplicate code is eliminated from the resulting
program. In this manner, for Linux programs all template entities
can be considered to be automatically instantiated.

all Instantiate all template entities declared or referenced in the com-
pilation unit. For each fully instantiated template class, all of its
member functions and static data members will be instantiated
whether or not they were used. Nonmember template functions
will be instantiated even if the only reference was a declaration.
This is the default mode when –fc370 is used, as it is how the IBM
compiler operates. The generated assembler source in IBM mode
will have specifications that instruct the linker not to declare du-
plicate definition errors, etc. Unfortunately, the IBM linker does
not remove duplicate definitions, which can cause significant code
expansion.

local Similar to used, except that the functions are given internal link-
age. This mode can be used for non-Linux and non-IBM mode
to provide “automatic” instantiation of templates. The compiler
will instantiate the functions that are used in each compilation
unit as local functions, and the program will link and run cor-
rectly. However, more than one source module can have a local
copy of the function, causing some increase in code. This is the
default when neither –flinux nor –fc370 is specified.

When –flinux is enabled, the default mode is used. The compiler will instantiate
all referenced template entities and produce code that causes the linker to remove
duplicate definitions.

When –fc370 is enabled, the default mode is all, as it is with the IBM compiler.
The compiler will instantiate all possible template entities. However, when –fc370
is enabled, the compiler will also generate instructions that cause the IBM linker to
ignore any duplicate definitions.

int8, int16, int32, int64

DCXX supports the int8, int16, int32 and int64 builtin data types sim-
ilar to that offered by the Microsoft C++ compiler. These can be used to declare
integers of 8-bits, 16-bits, 32-bits and 64-bits respectively.

These types are synonyms for types that have the same size. The int8 type is the
same as char, the int16 type is the same as short, int32 is the same as int

Systems/C++ 21



and int64 is the same as the long long type. When –mlp64 is specified , int64
is the same as long.

Note that by default, char is unsigned, and thus int8 is unsigned, while the
other types are signed, unless otherwise qualified.

These types are provided for compatibility with Microsoft.

22 Systems/C++



Compiling, Linking and
Running Programs

This chapter describes how to invoke the Systems/C++ C++ compiler, DCXX. It
also explains how to assemble the resulting assembly language source, how to link
modules to build an executable and how to run the resulting program. It is not
intended to be a complete description of compilers or the C++ language; for that,
one must consult other texts.

DCXX translates C++ source code into native IBM 390 assembly source, either
in HLASM format or GNU GAS format. This source is ready to be assembled into
object decks for linking on the mainframe.

Systems/C++ 23



Running DCXX

The DCXX command is used to compile programs and generate assembly source
code.

In OS/390 and z/OS

In the OS/390 and z/OS environments, the compiler is executed by invoking the
DCXX member of the Systems/C++ installation PDS, as installed. The options
are specified in the PARM statement. Each option is separated by a comma and
preceded with a dash. The first option that does not contain a dash names the
input file to be compiled. An option which begins with the commercial at-sign (@),
specifies a DDN from which to read other options.

For example, the following EXEC card will execute the compiler, directing the gen-
erated assembly source to the DD named ASM, as specified by the –oASM value
in the PARM statement, as well as producing a compile listing on the DD named
LIST.

//COMP EXEC PGM=DCXX,PARM=’-oASM,-flisting=LIST’

The compiler reads from the DD STDIN if no other file is specified as the input file.
Note that a comma is required to separate the arguments.

Another way to specify the same command using the –@ redirection option would
be:

//COMP EXEC PGM=DCXX,PARM=’-@PARMS’
//PARMS DD *
-oASM,-flisting=LIST
/*

In this example, the -oASM,-flisting=LIST options are specified in the file named
//DDN:PARMS from the PARM option to the compiler. Using this technique allows for
arbitrarily long command line options.

24 Systems/C++



In Windows

In the Windows operating systems, the compiler is named dcxx and may be found
in the installation directory. The command line is

dcxx [options] input-file

Options, if any, are preceded with a dash, –.

Unless otherwise specified, the generated assembly source is written to a default file.
On OS/390 and z/OS, the default output assembler file is named //DDN:ASMOUT, on
all other systems it is named asm.out.

The Windows version of DCXX supports the –@filename option. –@filename causes
the compiler to read the file filename and insert its contents in the command line.
This provides a mechanism for supporting arbitrarily long command line parameter
lists.

In the UNIX/LINUX environment

In the UNIX environment, the compiler is named dcxx, and can be found in the
installation directory. The command line is

dcxx [options] input-file

Options, if any, are preceded with a dash, –.

Unless otherwise specified, the generated assembly source is written to the file named
asm.out.

Systems/C++ 25



Include File Processing

On OS/390 or z/OS

On OS/390 or z/OS, the C++ preprocessor follows typical rules when searching for
#included files. First, for names specified with double quotes, unless –fnosearchlocal
is specified, an attempt is made to open the included file in the same “location” as
the including file. If that fails, any include search list, specified with the –I or –S
options is examined, in the order it was specified. The system include location is
then examined.

When checking the system include locations, the same PDS but with “.LIBCXX”
appended onto its name is searched first (i.e. “SYSINCL.LIBCXX”.) This is so that
any files provided by the C++ library to wrap around the C library (for example,
to manage namespaces) will be found before the C library headers.

#include names are mapped so as to make the typical UNIX-style include names
operate in a reasonable fashion on OS/390. First, if the name to be included begins
with a style-prefix (i.e. //DSN, //DDN, ...) then no other processing is performed and
the preprocessor attempts to open the specified file. If no style-prefix is specified,
then the name is searched for UNIX-style directory delimiters (the forward-slash.)
The last component of the file name is translated into a member name. The remain-
ing forward-slash characters are translated into periods. Then, the search location
is prefixed on the result to form the file name the preprocessor will attempt to open.

If the resulting prefix is //DSN or //DDN, any underscore characters ( ) are then
translated into pound-signs (#).

The resulting member name is further processed. All letters are transformed to
upper-case, any period is transformed to the commercial at-sign (@). The name is
truncated to 8 characters.

For example, if the systems #include directory (specified during installation) was
set to //DSN:SYSC.SYSINC, then the line:

#include <machine/ansi.h>

would attempt to open

//DSN:SYSC.SYSINC.MACHINE(ANSI@H)

26 Systems/C++



On UNIX, Linux and Windows

On UNIX, Linux and Windows, the C++ preprocessor follows typical UNIX rules
when searching for #included files. First, for names specified with double quotes,
unless –fnosearchlocal is specified, an attempt is made to open the included file in
the same directory as the including file. If that fails, the directory search list is
examined, in the order it was specified on the command line with the –I or –S
options. The system include directories are then examined.

For system includes (#include <...>), directories are searched in the following
order:

1. The directories specified by any –I or –S options, in the order listed on the
command line.

2. Any directories specified by –isystem.

3. The system include directory directory specified by System Include in the
dignus.inf license file.

4. Any directories specified by –idirafter.

For local includes (#include "..."), the following directories are searched first:

1. The directory containing the current source.

2. Any directories specified by –iquote.

Then the search continues as if it was a system include file.

Header filename mapping ($$HDRMAP)

Header filename mapping is a facility which can map #include names specified in
the original source file to other names, without changing the original source. This
facility can be useful when moving source from mainframe to cross environments, or
vice-versa. When the compiler first begins execution, it looks for mapping files in
the #include search list named $$HDRMAP, which are used to specify this translation.
$$HDRMAP processing occurs before any other host-specific mappings are applied.

DCXX maintains two separate mappings, one for system headers and another for
user headers. The system header mapping consists of all of the $$HDRMAP files (not
just the first one) that would be found if #include <$$HDRMAP> was encountered,
and is used for resolving any headers included with #include <...>. The user
header mapping consists of all of the $$HDRMAP files that would be found if #include

Systems/C++ 27



"$$HDRMAP" was encountered, and is used for resolving any headers included with
#include "...".

Note that even though DCXX maintains two separate mappings, by default the
–fuser sys hdrmap option is in effect, causing the user header map to be applied to
all #includes, even system ones. If –fnouser sys hdrmap is specified, then only the
system header map will be applied to system include directives.

Every name specified in a #include statement is searched for in the appropriate
$$HDRMAP file. If the name is located in a $$HDRMAP file, the specified alternative
name will be used instead of the original name from the source.

In a $$HDRMAP file, any line that begins with a pound sign (#), will be considered a
comment line and ignored. Other lines specify the source and destination mapping
and are of the form:

source destination

The specified source and destination are delimited by white space, and can optionally
be enclosed within double quote characters. When enclosed within double quote
characters, the names are treated as string literals.

Special lines specifying directory mappings are of the form:

DIR source destination

“DIR” is a keyword to indicate that this mapping applies to directories. Directory
mappings apply to all of the text up to the last forward slash (“/”), allowing you
to remap all files from one directory into another directory. Useful on systems like
CMS where there is no nested directory heirarchy. Directory mappings are applied
after any normal mappings.

For example, consider the following $$HDRMAP file, placed in the current working
directory on a UNIX host:

# redirect header files to their UNIX filenames
DIR special very_special
SPEC#HDR special/header.h
LONGNAME "special/long name.h"

Then, if the original source contains

#include "SPEC#HDR"

28 Systems/C++



the compiler will act as if the source contained

#include "very_special/header.h"

First it will map “SPEC#HDR” to “special/header.h”, then it will convert that to
“very special/header.h” according to the DIR rule.

Note that the Systems/C++ library for OS/390 uses a $$HDRMAP file to translate
the long header file names associated with typical C++ installations into unique
short ones that can reside in a PDS.

Systems/C++ 29



Description of options

The options available to DCXX are summarized in the following table:

–Dname[=value] Add name to the list of C preprocessor defini-
tions, optionally assigning it a value

–Idir Add dir to the list of directories to examine
for include files

–iquote dir Add dir to the list of directories to examine
for local include files.

–isystem dir Add dir to the list of system include directo-
ries.

–idirafter dir Add dir to the list of directories to search after
the system include directories.

–Sdir Add dir to the list of directories to examine
for include files, honoring IBM’s SEARCH se-
mantics.

–ofile Write the generated assembly language source
to file

–E Perform only the preprocessing step of compi-
lation

–femitdefs Include #define values in preprocessor (–E)
output

–M[=filename] Generate a source dependence list.

–fdep[=filename] Generate a source dependence list during reg-
ular compilation.

–g Generate debuggable code and provide extra
debugging information

–g0 Disable debuggable code and debugging infor-
mation

–gdwarf Generate DWARF debugging information

–gstabs Generate STABS debugging information

–gisd Generate ISD debugging information

–fansi bitfield packing
–fno ansi bitfield packing

Follow/Ignore ANSI rules for bitfield alloca-
tion in structures

–fc370=version Compile in C/370 compatibility mode

30 Systems/C++



–fexportall Provide DLL definitions for all defined
data/functions

–fep=name Specify a name that will be placed on the gen-
erated END card to denote a program entry
point

–fprol=macro Specify an alternate name for the function pro-
logue macro

–fprv=macro Specify an alternate name for the macro which
supplies the address of the Pseudo-Register
Vector

–fepil=macro Specify an alternate name for the function epi-
logue macro

–fopts=macro Request interesting options noted at top of
generated assembly

–lnameaddr
–fno lnameaddr

Enable or disable generation of Logical Name
Address info

–fendmacro=macro Specify text to appear before the END state-
ment

–finstrument functions Request function beginning/ending instru-
mentation

–fcode base=N Specify a register to use as the base register
for executable code

–fframe base=N Specify a register to use as the base register
for automatic data

–freserve reg=N Instruct the compiler that register N is re-
served

–fwarn disable=N[,N,N-M,...] Disable particular warnings

–fwarn enable=N[,N,N-M,...] Re-enable particular warnings

–fwarn promote=N[,N,N-M,...] Promote a warning to an error

–ftrim Remove trailing blanks from input

–faddh Add “.h” to #include file names

–flowerh Lower-case characters in #include file names

–fnosearchlocal Specify that “local” searches for #include files
should not be performed

–fpreinclude=filename #include the named file before compiling the
C++ source file

Systems/C++ 31



–flisting[=filename]
–fno listing

Generate a listing of the compilation

–fvtable listing
–fno vtable listing

Enable/disable virtual function table informa-
tion to listing

–fpagesize=n Set the listing page size to n lines

–fshowinc
–fno showinc

Enable/disable including source files from
#include files in the listing

–fstructmap
–fno structmap

Enable/disable including struct layout infor-
mation in the listing

–fstructmaphex
–fno structmaphex

Structure layout information should/shouldn’t
be displayed in hex

–frent Generate re-entrant code

–fmaxerrcount Limit the number of reported errors

–Uname Undefine #define macros

–fincstripdir Remove directory components from #include
names

–fincstripsuf Conditionally remove suffixes from #include
names

–fincrepsuf Conditionally replace suffixes from #include
names

–fmargins[=m,n] Specify margins for source lines

–fmesg=style Specify message style

–fasciiout
–fnoasciiout

String and character constants will be in
ASCII instead of EBCDIC

–fdollar Allow the dollar-sign character ($) in identi-
fiers

–fwchar ucs Indicate that wide character constants are
UCS-2 or UCS-4

–fwchar=n Specify the size of wchar t

–fsname[=name] Specify unique CSECT name

–fnosname Tell the compiler to let PLINK assign
CSECT names

–fsnameprefix=char Explicitly set the section name prefix

–fieee Enable support for IEEE floating point format

32 Systems/C++



–fmrc
–fnomrc

Enable/disable use of mainframe-style return
code

–fpatch
–fno patch

Specify if a patch area should be generated

–fpatchmul=n Alter the size of any generated patch area

–flinux Enable Linux/390 code generation

–fvisibility=setting Set ELF object symbol visibility

–fsigned char
–funsigned char

Control if char is signed or unsigned by default

–fsuppress vtbl Suppress generation of C++ vtable informa-
tion

–fforce vtbl Force generation of C++ vtable information

–finstantiate=mode Set the template instantiation mode

–fdistinct template signatures
–fno distinct template signatures

Enable or disable distinct template signatures

–fimplicit include
–fno implicit include

Enable/disable implicit inclusion for template
libraries

–ftempinc[=directory]
–fno tempinc

Enable/disable template instantiation method

–fnonstd qualifier deduction
–fno nonstd qualifer deduction

Enable or disable support for non-standard
qualifier deduction

–fexceptions
–fno exceptions

Enable or disable support for C++ exceptions

–fguiding decls
–fno guiding decls

Imply template instantation with a specific
declaration

–frtti
–fno rtti

Enable or disable support for C++ Run-Time
Type Information

–farray new and delete
–fno array new and delete

Enable or disable support for special new[]
and delete[] operators for arrays

–fexplicit
–fno explicit

Enable or disable support for the explicit
keyword

–fnamespaces
–fno namespaces

Enable or disable support for C++ names-
paces

–fold for init Variables declared in for() initialization
statements follow the pre-ANSI standard se-
mantics

Systems/C++ 33



–fnew for init Variables declared in for() initialization
statements follow the ANSI standard seman-
tics

–fold specializations
–fno old specializations

Enable or disable support for old-style tem-
plate specializations

–fextern inline
–fno extern inline

Enable or disable support for extern inline
functions

–fshort lifetime temps
–flong lifetime temps

Enable or disable support for cfront-style long
lifetime temporaries

–fbool
–fno bool

Enable or disable support for the bool key-
word

–fwchar t keyword
–fno wchar t keyword

Enable or disable support for the wchar t key-
word

–ftypename
–fno typename

Enable or disable support for the typename
keyword

–fimplicit typename
–fno implicit typename

Enable or disable support for determining if a
template parameter is a type

–fdep name
–fno dep name

Enable or disable support for dependent name
processing

–fparse templates
–fno parse templates

Enable or disable the parsing of templates

–fspecial subscript cost
–fno special subscript cost

Enable or disable the preferential use of an
overloaded [] operator over a * operator for
array access

–falternative tokens
–fno alternative tokens

Enable or disable support for the C++ alter-
native keywords tokens in comparisons

–fenum overloading
–fno enum overloading

Enable or disable support for overloading op-
erations on enum-type operands

–fconst string literals
–fno const string literals

Treat string literals as const or non-const

–fimplicit extern c type conversion
–fno implicit extern c type conversion

Allow implicit conversions between C and
C++ functions

–fclass name injection
–fno class name injection

Enable or disable injection of the name of a
class into the class’s scope

–farg dependent lookup
–fno arg dependent lookup

Enable or disable argument-dependent symbol
lookup

34 Systems/C++



–ffriend injection
–fno friend injection

Controls whether or not the name of a class or
function declared only in friend declarations is
visible

–flate tiebreaker const and/or volatile qualifiers are not used
to distinguish function overloading

–fearly tiebreaker const and/or volatile qualifiers are used to
distinguish function overloading

–fnonstd using decl
–fno nonstd using decl

Enable or disable the use of a nonmember
using-declaration that specifies an unqualified
name

–fvariadic macros
–fno variadic macros

Enable or disable support for C99 variadic
macros

–fextended variadic macros
–fno extended variadic macros

Enable or disable support for GCC-style vari-
adic macros

–fbase assign op is default
–fno base assign op is default

Enable or disable the use of a copy assignment
operator that takes a reference to a base class
as the default

–fignore std
–fno ignore std

Enable or disable the treatment of the std
namespace as a synonym for the global names-
pace

–version Print the compiler version number on STD-
OUT and exit

–famode=val Specify the runtime addressing mode

–march=esa390,–march=esa390z Enable ESA/390 architecture compilation

–march=zN Enable use of the edition N of z/Architecture
instructions

–mlp64 Enable 64-bit compilation, implies -march=z0

–milp32 Enable 32-bit compilation

–mfp16
–mfp4

Enable/disable use of extended FP registers

–mlong-double-128
–mlong-double-64

Enable/disable 128-bit long double type

–mmvcle
–mno-mvcle

Enable/disable use of the MVCLE/CLCLE in-
structions

–mdistinct-operands
–mno-distinct-operands

Enable/disable use of distinct-operands facil-
ity instructions

Systems/C++ 35



–mextended-immediate
–mno-extended-immediate

Enable/disable use of distinct-operands facil-
ity instructions

–mload-store-on-condition
–mno-load-store-on-condition

Enable/disable use of load/store-on-condition
facility instructions

–mhfp-multiply-add
–mno-hfp-multiply-add

Enable/disable use of HFP multiply-and-add
facility instructions

–mlong-displacement
–mno-long-displacement

Enable/disable use of long-displacement facil-
ity instructions

–mgeneral-instructions-extension
–mno-general-instructions-extension

Enable/disable use of general-instructions-
extension facility instructions

–mhigh-word-facility
–mno-high-word-facility

Enable/disable use of high-word facility in-
structions

–mhfp-extensions
–mno-hfp-extensions

Enable/disable use of HFP extensions facility
instructions.

–finline[=x[:y:z]]
–fnoinline

Control inlining optimization

–O[n] Set optimization level

–fasmcomm=mode Control the comments in the assembly output

–fasmlnno
–fnoasmlnno

Include line numbers in C source comments in
generated assembly

–fmin lm reg=val Set the minimum number of registers in one
LM instruction

–fmin stm reg=val Set the minimum number of registers in one
STM instruction

–fflex Enable FLEX/ES-specific optimizations

–fpic Generate position independent code, small
GOT

–fPIC Generate position independent code for Linux
& z/TPF, large GOT

–ffpremote
–ffplocal

Function pointers are remote/local

–fxplink Use eXtra Performance Linkage

–fc370 extended Enable C/370 LANGLVL(EXTENDED) com-
patibility mode

36 Systems/C++



–fdll=cba
–fdll=nocba

Enable/disable LE DLL(CALLBACKANY) sup-
port

–frsa=size Specify the amount of space the compiler re-
serves for the Register Save Area

–fpack=val Specify a default maximum structure align-
ment

–fuser sys hdrmap
–fnouser sys hdrmap

Use user $$HDRMAP for system #includes

–fevents=filename Emit an IBM-compatible events listing

–fnamemangling=mode Select the name mangling mode to use for IBM
compatibility

–fenum=val Specify a default enumeration size

–ftest[=name] Enable a separate test csect

–fprolkey=key Append a global prologue key

–fsave dsa over call
–fno save dsa over call

Control if DSA bytes are saved and restored
over alternate linkage call

–fcommon
–fnocommon

Enable/disable common linkage for uninitial-
ized globals

–fdfe
–fnodfe

Enable/disable dead function elimination

–fmapat
–fnomapat

Enable/disable mapping ’@’ to ’ ’ in external
symbol names

–fat
–fnoat

Support @-operator in expressions

–fctrlz is eof
–fno ctrlz is eof

Enable/disable treating control-Z as an EOF
character

–fpermissive friend
–fno permissive friend

Enable/disable friend declarations on private
members

–ffnio
–fno fnio

Enable/disable function names in objects for
debugging

–fhide skipped
–fshow skipped

Enable/disable omission of preprocessor-
skipped lines in listing

–fsigned bitfields
–funsigned bitfields

Set default signedness of bitfields with bare
types

–v Print version information

Systems/C++ 37



–fsched inst
–fsched inst2
–fno sched inst

Control the behavior of the instruction sched-
uler

–fxref
–fno xref

Enable/disable cross-reference listing

–frestrict
–fno restrict

Enable/disable C99-style restrict keyword

–fcpp98 Specify only C++98 will be accepted

–fcpp11 Enable support for C++11 language features

–fcpp14 Enable support for C++14 language features

–fcpp17 Enable support for C++17 language features

–funrestricted unions
–fno unrestricted unions

Enable/disable the C++11 unrestricted
unions feature

–fimplicit noexcept
–fno implicit noexcept

Enable/disable the implicit C++11 exception
specifications

–fstatic anon names
–fno static anon names

Enable/disable forcing members of the un-
named namespace to static

–fsource enc=utf8
–fsource enc=ascii

Select source character encoding

–fdwarf extern
–fno dwarf extern

Enable/disable generation of DWARF data for
extern variables

38 Systems/C++



Detailed description of the options

The –D option (define a macro)

The –D option defines a symbol in the same way as a #define preprocessor directive
in C source code. It’s usage is:

dcxx -Dmacro[=text]

For example:

dcxx -DMAXLEN=1024 prog.cxx

is equivalent to inserting the following C++ source line at the beginning of the
program prog.cxx:

#define MAXLEN 1024

Because the –D option causes a C++ preprocessor symbol to be defined for the
compilation, it can be used in conjunction with other preprocessor directives, such
as #ifdef or #if defined() to implement conditional compilation. A common
example of conditional compilation is:

#ifdef DEBUG
printf("Entered function func()\n");

#endif

This debugging code would be included in the compiled object by adding –DDEBUG
on the DCXX command line.

The –I option (specify additional locations to look for included files)

The –I option adds a specified location (a directory on UNIX and Windows) to
the search list examined when source is #included. The name of the directory
immediately follows the –I, with no intervening spaces.

See the section on include file processing on page 26 for more details.

Systems/C++ 39



The –iquote dir option (Add dir to the list of directories to examine
for local include files)

The –iquote dir option provides a local include search path, which is searched just
for directives specified with a double quote character (#include "...").

The –isystem dir option (Add dir to the list of system include di-
rectories)

The –isystem dir option provides a system search path, which is searched for any
#include directives which are still not resolved after looking in the –Idir paths.
These system search paths are treated like the System Include path in the dignus.inf
license file, meaning that first the search is tried with libcxx appended to the path
before the bare path. This way it will find C++ headers that wrap C ones (like
#include <stdio.h>).

The –idirafter dir option (Add dir to the list of directories to search
after the system include directories)

The –idirafter dir option provides an “after-system search path”, which is searched
for any #include directives which are still not resolved after looking in the –isystem dir
paths or in the System Include path specified in the license file. These paths are
also treated like system search paths, with the libcxx directory checked first.

The –Sdir option (Add dir to the list of directories to examine for
include files, honoring IBM’s SEARCH semantics)

The –Sdir option is provided for compatibility with IBM’s SEARCH parameter, and is
useful for looking up headers in PDS-style datasets, especially when they have been
transfered to a PC. The –S paths are searched in the order they were specified, just
like –I paths.

When searching for a #include filename in a –S path, first the #include filename
is uppercased and any underscores ( ) are converted into at-signs (@). Then the
filename is split into directory, member, and extension. Then the member name is
truncated to 8 characters. Finally, the filename components are combined with the
–S path in one of three ways, depending on how the –S is specified. If “.*” is used
as a suffix, then the member and extension names are appended to it as if it was a
DSN. If “.+” is the suffix, then directory and extension are appended to the DSN
and the member name is treated as a member name. If there is no special suffix,
then the member name is used as a member name, and the directory and extension
are ignored.

40 Systems/C++



For example, if #include <dir/longfilename.ext> is encountered, then here are
some possible searches:

-Spath.* Searches path.EXT.LONGFILE.
-Spath.+ Searches path.DIR.EXT/LONGFILE (or path.DIR.EXT(LONGFILE)

on MVS).
-Spath Searches path/LONGFILE (or path(LONGFILE) on

MVS).

The –ofile option (specify the name of the generated output file)

The –ofile option specifies the name of the generated assembly output file. If the file
cannot be opened for writing, the compiler writes the generated assembly output to
stdout. The usage of –o is as follows:

dcxx -ofilename prog.c

For example:

dcxx -omyfile.asm myfile.cxx

will compile the C++ source file myfile.cxx placing the generated assembly language
source in the file myfile.asm.

If file is the single dash character (-), then the output is written to stdout.

The –E option (preprocess only)

The –E option instructs the compiler to execute the preprocessing phase of compi-
lation only. No attempt is made to generate code. The output of the preprocessor
is written to stdout.

The –femitdefs option (include #define values in preprocessor out-
put)

The –femitdefs option causes the compiler to generate #define lines in the prepro-
cessor output for every defined macro.

This can be utilized in complex configurations to determine where a #define was
processed, and how it was defined. It can also be helpful in determining which
macros were predefined or defined on the command line.

If the –E option isn’t specified, –femitdefs is ignored.

Systems/C++ 41



The –M[=filename] option (generate a source dependence list)

The –M option causes the compiler to perform the preprocessing step only, and
generate a dependency list suitable for including in a “makefile” on UNIX platforms.

The compiler will generate lines of the form:

target: source

where target is generated from the source file name (replacing any extension with .o).
The source is the any source file the compiler read while performing the preprocessing
step.

If the optional filename is provided, then the dependency list will be output to that
file, otherwise it will be output to stdout.

The –fdep[=filename] option (generate a source dependence list dur-
ing regular compilation)

The –fdep option has the same effect as –M, except that the compiler also performs
the compilation step. Using –fdep, it is possible to generate the dependency list
with every compilation, instead of as a separate step.

The –g option (debuggable code)

The –g option instructs the compiler to generate more information in the generated
assembly language file. This extra information is generally helpful when debugging
the generated code.

When –flinux or –fztpf is also specified, this option causes the compiler to generate
DWARF version 3 debugging information suitable for use with the Linux debugger,
gdb.

When –fc370 is also specified, this causes the compiler to generate ISD format
debugging information (referenced from PPA3/PPA4) for IBM compatibility.

Otherwise, DWARF version 3 debug information will be generated for processing
by PLINK. Run PLINK with –dbg=filename to specify the side file that will be
loaded by DDBG.

By default, when –g is specified, some optimizations (such as inlining) are disabled.
However, debugging information may still be generated on optimized output. For
this to happen, you must ensure that –g comes before –O (or –finline) on the com-
mand line, or the –O will be ignored.

42 Systems/C++



The –g0 option (Disable debuggable code and debugging informa-
tion)

The –g0 option disables generation of debugging information, and re-enables inlin-
ing, as if the –g option had not been specified.

The –gdwarf option (generate DWARF debugging information)

The –gdwarf option is used to instruct the compiler to generate debugging informa-
tion using the DWARF format instead of the STABS or ISD formats.

When –flinux is also enabled, the information is embedded within the object file.

When –fc370 is also used, the DWARF information is placed in a side file. The
filename defaults to the source file name with the extension replaced with “.dbg”.
The name of the side file may be manually specified with –gdwarf=filename.dbg.
The name provided here is the name that the debugger will ultimately use to find
the side file, so it may be necessary to manually specify a filename with a path that
is valid on your debugging host. The side file is actually created by DASM, so If
you want the side file to be placed in a different intermediate location on your build
host than on your debugging host, you can specify a separate –fdwarf=filename.dbg
on the DASM commandline to override the name used by DCXX.

Otherwise, the DWARF information is encoded in a special CSECT in each com-
pilation unit which PLINK will put in a side file specified by its –dbg=filename
option.

Note that –gdwarf, like –g must occur before any –O or –finline options which occur
on the commandline in order to generate debugging information for optimized code.

The –gstabs option (generate STABS debugging information)

The –gstabs option is used to instruct the compiler to output legacy STABS debug-
ging information.

The –gisd option (generate ISD debugging information)

The –gisd option is used to instruct the compiler to output legacy ISD debugging
information, only for use in LE mode (–fc370) for compatibility with IBM tools.

Systems/C++ 43



The –fansi bitfield packing/–fno ansi bitfield packing options (ANSI
rules for bitfield allocation)

The –fansi bitfield packing option instructs the compiler to allocate bitfields in struc-
tures according to ANSI rules. This typically results in smaller structures, as it
allows the compiler to pack bitfields as tightly as possible. When this option isn’t
enabled, the compiler will follow more traditional bitfield allocation rules. Enabling
this option causes the compiler to allocate bitfields as the IBM C++ compiler does
when the LANGLVL is set to ANSI. When the option is not enabled, the compiler
will allocate bitfields in a manner compatible with IBM C++ when the LANGLVL
is set to COMMONC.

When –fansi bitfield packing is not enabled, the compiler will pad structures to the
bitfield type alignment requirements if the bitfield is the last element of the structure.

When –fansi bitfield packing is enabled, structures are not padded. The structure
size is packed to a byte boundary sufficient to contain the number of bits specified
by the bitfield.

The –fno ansi bitfield packing option negates the effect of the –fansi bitfield packing
option and is the default.

The –fc370=version option (specify IBM C++ compatibility)

The –fc370 option specifies that the generated assembly language source is to be
compatible with IBM C++ objects. In this mode, the compiler will generate func-
tion prologues and epilogues, data offsets, alignments and initializers that inter-
operate with IBM C++. Note that the generated assembly source must be pro-
cessed by the Systems/ASM assembler to produce a correct object file. For more
information, see the chapter on IBM C compatibility mode (page 147).

The value of version is used to indicate which version of IBM C++ is desired. Cur-
rent supported version specifications are v2r4, v2r6, v2r10, and z1r2 to z1r13.
Language features, pre-defined macros, and prologue/epilogue function linkage con-
ventions all change to be compatible with the specified version of IBM C++.

The –fexportall option (Provide DLL definitions for data/functions)

The –fexportall option causes the compiler to provide IBM DLL definitions for all
defined data and functions in the compilation, in IBM compatibility mode.

Typically, to cause a datum or function to be visible to other code that uses an
IBM DLL, the #pragma export pragma must be employed, or the export keyword
applied to a class, function or data.

44 Systems/C++



The –fexportall option removes the need for that, making all defined data, classes
and functions visible.

The –fexportall option is only meaningful when the –fc370 option are also enabled.

The –fdll=cba and –fdll=nocba options (Enable/disable LE DLL(CALLBACKANY)

support)

Language Environment always uses FASTLINK DLL linkage (or XPLINK) for C++
modules. However, it is possible to call a function pointer provided by an LE C
module, which will not use FASTLINK. In the default case (–fdll=nocba), DCXX
assumes that such function pointers are DLL function pointers and provide both a
PRV and an entry point. However, if the C module which provided the function
pointer was not itself compiled with –fdll then it is necessary to use –fdll=cba on
the DCXX command line. In that case, DCXX will generate a call to a run-time
helper (@@FXCLBK) which will automatically detect whether the function pointer
provides a PRV or not.

The –fep=name option (specify entry point)

The –fep=name option provides a symbol that will be placed on the END statement
in generated assembly language source. It is used to specify the entry point of a
module.

The –fprol=macro option (specify alternate prologue macro)

The –fprol=macro option specifies an assembly language macro that will be issued
at the start of each function in this compilation, instead of the default DCCPRLG
macro. This option is not valid in combination with the –fc370 (IBM C++ compat-
ibility) option. The macro is responsible for function startup, stack management,
saving registers, etc. The macro is passed these arguments:

ARCH=ZARCH Added to the prologue parms when –mlp64 is spec-
ified on the compiler command line.

BASER=n The register number used as the code base register
for this function. If the value of n is 0, then this
function does not require a code base register. In
this case, the function prologue does not need to set
up a base register or worry about code addressibil-
ity.

CINDEX=n The unique function number for this function.

ENTRY=[YES|NO] Whether an ENTRY statement should be gener-
ated for this function.

Systems/C++ 45



FRAME=n The size of the automatic data required by this func-
tion. The prologue macro must allocate this many
bytes. Note that if SAVEAREA=NO is specified, the
function prologue is not required to allocate these
bytes. A reasonable size will still be specified when
SAVEAREA=NO is present for backwards compatibil-
ity.

FRAMER=n The register number used as the automatic storage
area base register for this function. If the value of n
is 0, then this function does not use any automatic
storage, and the functio prologue need not allocate
any.

IEEEFP=[YES|NO] Indicates the function was compiled with IEEE
floating point or not (HFP.)

LNAMEADDR=label Prior to each function, the compiler generates
a function name block that contains the “logical”
name for the function. This block is a 4-byte length,
followed by a NUL-terminated string. The compiler
passes the label for this block to the prologue macro
for any use there. The name specified in the func-
tion descriptor block is the “C++” name of the
function, and does not reflect any application of a
#pragma map or other compiler-assigned value.

This function name block label is also passed to the
DCCENTR and DCCEXIT macros generated when the
–finstrument functions option is enabled.

SAVEAREA=NO If SAVEAREA=NO is specified on the prologue macro,
the prologue expansion does not need to create lo-
cal save area for this function. This indicates that
the function is a “leaf” function (it doesn’t invoke
any other functions) and did not reference any local
memory.

Note that the compiler assumes the registers are
saved/restored by the prologue and epilogue; but
that saving and restoring is typically accomplished
in the register save-area of the calling function.

Note that no bytes need to be allocated for the func-
tion is SAVEAREA=NO is specified, even though the
FRAME= option may have a value.

The name of the function is provided as the name on the macro invocation. Also
note that use of #pragma prolkey can add arguments to the macro invocation.

46 Systems/C++



The –fprv=macro option (specify alternate PRV address macro)

The –fprv=macro option specifies an assembly language macro that will be issued
to acquire the base address of the Pseudo-Register Vector (PRV), instead of the
default DCCPRV. The compiler will specify one argument on the macro:

REG=nn Specify the register which should contain the ad-
dress of the PRV at the end of the macro.

The macro will be generated once for each function that needs to reference data
in the Pseudo-Register Vector. The compiler will then save the returned address
locally in the function’s stack frame for future reference.

The –fepil=macro option (specify alternate epilogue macro)

The –fepil=macro option specifies an assembly language macro that will be issued
at the end of each function in this compilation, instead of the default DCCEPIL
macro. This option is not valid in combination with the –fc370 (IBM C compatibil-
ity) option. The macro is responsible for function termination, stack management
and return to the calling function.

The –lnameaddr and –fno lnameaddr macros (Enable or disable gen-
eration of Logical Name Address info)

Normally, the compiler generates a Logical Name Address block for each function.
This block of memory contains the logical (C++) name for each function. The
address of this memory is passed on the generated prologue macro as the &LNAMEADDR
parameter.

If –fnolnameaddr is specified, the compiler will not generate the Logical Name Ad-
dress block, and will not provide a &LNAMEADDR parameter.

The –flnameaddr option is enabled by default.

The –fopts[=macro] option (Request interesting options noted at
top of generated assembly)

The –fopts[=macro] option specifies requests that the compiler invoke the DCCOPTS
(or other specified macro) at the top of the generated assembly language source.
Parameters to the macro will describe some of the code-generation options specified
on the DCXX command line.

Systems/C++ 47



The purpose of this macro is to provide a mechanism to direct any macro-generated
source based on DCXX compiler options. This can be used to alter the expansion
of other macros. For example, the prolog macro could expand differently if –fieee
were specified on the DCXX command line. Or, various runtime flags could be set
as appropriate.

If –fieee is specified on the command line, then FP=IEEE will be added to the DCCOPTS
invocation.

If –fasciiout is specified on the command line, then CHARSET=ASCII will be added
to the DCCOPTS invocation.

The –fopts macro may not be used if the –flinux or –fc370 options are also used.

The –fendmacro[=text] option (Specify text to appear before the
END statement)

The –fendmacro[=text] option cause the compiler to invoke the DCCEND (or other
specified text) just before the END statement in the the generated assembly language
source. The compiler will not add any arguments to the invocation of the macro.
Thus, the text could be any valid assembly language text.

Any valid assembly language text can be specified.

The –fendmacro option may not be used if the –flinux or –fc370 option is also used.

The –finstrument functions option (Request function beginning /end-
ing instrumentation)

The –finstrument functions option causes the compiler to generate instrumentation
code that denotes the start and end of a function.

When the –flinux option is enabled, –finstrument functions causes the compiler to
generate the appropiate code for use with Linux profiling tools.

When –flinux is not specified, the compiler generates references to the DCCENTR and
DCCEXIT macros. DCCENTR and DCCEXIT are invoked with two parameters ADDR=reg
and LNAMEADDR=label. The ADDR parm is a register that contains the starting
address of the current function. The LNAMEADDR parm is a label for a name structure
generated by the compiler. The name structure is a 4-byte length, followed by a NUL-
terminated string containing the function’s name. The name will be the “logical”
C++ name for the function similar to how appears in the C++ source, and does
not reflect any application of #pragma map or any other compiler-assigned name.

The compiler saves and restores registers R0, R1, R14 and R15 across invocations of
these macros, so they can be used in the macro. Furthermore, when –finstrument functions

48 Systems/C++



is enabled, the compiler guarantees a register save area for the current function will
be requested. That is, when –finstrument functions is enabled the SAVEAREA=NO
parameter will not be specified on the prologue macro; ensuring a register save area
will be available in the function.

Although example DCCENTR and DCCEXIT macros are provided with the Systems/C
library, these are essentially empty and will need to be altered for use. The following
example assumes the presence of a function named TRACE, which accepts a pointer
to the function’s entry point in R1 and a pointer to the name of the function in R0.

macro
DCCENTR &ADDR=none,&LNAMEADDR=none
L 1,=A(&LNAMEADDR)
LA 0,4(0,1) R0 points to NUL-terminated name
LR 1,&ADDR R1 points to function address
L 15,=V(TRACE) Call "TRACE"
BALR 14,15
B *+8
LTORG
mend

The compiler allocates up to 128 bytes for the expansion of the DCCENTR and
DCCEXIT macros. If the macro expansion results in more than 128 bytes, the
generated code may encounter addressability errors.

Note that the function instrumentation is not the same as the function prologue
and epilogue. Because of the possibility of inlined functions, the instrumentation
can actually appear anywhere in the code. The compiler will note the entry and
exit from an “inlined” function by generating the instrumentation at the proper
location.

The –fcode base=N option (specify register to use for addressing
code)

The –fcode base=N option specifies a different base register for executable code.
The default base register is R12. N is an integer, in the range 2 to 13. Registers
0, 1, 14 and 15 may not be specified as the code base register. If register 13 is
specified as the code base register, then prologue and epilogue macros must also be
specified. The default prologue and epilogue macros assume register 13 is the frame
base register. The value specified here becomes the value of the BASER argument
to the prologue macro.

Systems/C++ 49



The –fframe base=N option (specify register to use for addressing
automatic data)

The –fframe base=N option specifies a different register to use for addressing auto-
matic data. The default frame base register is R13. Automatic data is allocated
for each function on a dynamic basis during program execution. N is an integer, in
the range 2 to 13. That is, one may not specify registers 0, 1. 14 or 15 may not
be specified as the frame base register. The default prologue and epilogue macros
assume register 13 is the frame base register. Prologue and epilogue macros must be
provided if a value other than 13 is specified in the –fframe base option. If register
13 is specified as the code base register, then a different register must be specified
as the frame base register.

The –freserve reg=N option (reserve register #N)

The –freserve reg=N option instructs the compiler that register #N is reserved and
should not be used in code generation. The compiler will reserve that register for
the entire compilation and not generate code that alters the register. This can be
useful for particular inline assembly sequences, or when using a prologue/epilogue
sequence that assumes a register remains unaltered throughout execution.

The –fwarn disable=N[,N,N-M,...] option (disable emission of warn-
ing(s))

The –fwarn disable=N[,N,N-M,...] option disables emission of the named warn-
ing(s). A range of warnings can be specified separated by the hyphen character.
More than one warning may be specified, separated by commas or colons. The
option may appear multiple times.

A disabled warning may be re-enabled with the –fwarn enable option.

The –fwarn enable=N[,N,N-M,...] option (reenable disabled warn-
ing(s))

The –fwarn enable=N[,N,N-M,...] option enables emission of the named warning(s).
A range of warnings can be specified separated by the hyphen character. More than
one warning may be specified, separated by commas or colons. The option may
appear multiple times.

An enabled warning may be disabled with the –fwarn disable option.

50 Systems/C++



The –fwarn promote=N[,N,N-M,...] option (promote warning(s) to
error status)

The –fwarn promote=N[,N,N-M,...] option promotes emission of the named warn-
ing(s). A range of warnings can be specified separated by the hyphen character.
More than one warning may be specified, separated by commas or colons. The op-
tion may appear multiple times. Once a warning has been promoted, it remains an
error.

The –ftrim option (remove trailing blanks from source)

The –ftrim option removes trailing blanks from input source lines. This can be
useful on cross-platform hosts if the source has been copied from a mainframe fixed
record length data set. When copying such a file to a cross-platform host, the record
length is typically preserved, causing extra blanks to be appended. These blanks
can cause problems if they occur after a backslash (\). Using –ftrim will remove
these trailing blanks, allowing the source to be compiled on the cross-platform host
as it was on the mainframe.

The –faddh option (add “.h” to #include names)

The –faddh option causes the compiler to examine each #include name from the
source file. If the specified string does not end in “.h”, a “.h” will be added. This
option can be useful when moving program source from an OS/390 environment
where PDS names sometimes don’t include “.h”.

The –flowerh option (convert #include names to lower case)

The –flowerh option causes the compiler to convert characters in #include file
names to lower case. This conversion is applied before any other modifications are
made to the file names. This option can help in a multi-OS environment, where
sources are shared between file systems which are case-sensitive (i.e. UNIX) and
not case-sensitive (i.e. Windows.) On the case-sensitive system, convert all the file
names to lower case in the file system, and use the –flowerh option to ensure the
compiler uses all lower-case names for #include file lookup.

The –fnosearchlocal option (don’t look in “local” directories)

The –fnosearchlocal option causes the compiler to not examine “local” directories
when doing #include lookup for file names that start with a double quote.

Systems/C++ 51



The –fpreinclude=filename option (#include the named file before
compiling the C++ source file)

The –fpreinclude=file option causes the compiler to behave as if

#include "filename"

were the first line in the C++ source file. That is, the compiler will look for the
named file on the #include list. If found, it will be processed before the primary
C++ source file.

The –flisting[=filename] option (generate a listing)

The –flisting[=filename] option will cause the compiler to produce a listing of the
compilation. The listing shows such items as the source line, the file name table,
C preprocessor expanded lines, and the structure map. If the –fshowinc option
is enabled, source lines which originate in #included files will be included in the
listing. Otherwise, only the source from the primary file will be listed.

A filename for the listing may be optionally specified. If no filename is specified,
the listing is written to stdout.

This option can be disabled with a subsequent –fno listing option.

The –fvtable listing and –fno vtable listing options ((enable/disable
virtual function table information to listing)

Classes that contain virtual functions define a virtual function table, which is a
hidden compiler-generated variable initialized with a list of function pointers. At
times, it is convenient to know the layout of this table, especially to determine if
the layout may have changed as a result of maintenance. The –fvtable listing option
instructs the compiler to emit a listing of the members in the virtual function table
after each class’s description in the structure map section of the listing. The default
is –fno vtable listing.

It is important to note that the virtual function table listing does not include base
class tables, even though the complete class will depend on these as well. So to test
if two builds are truly compatible, base class virtual function tables must be checked
independently.

The –fpagesize=n option (set the listing page size to n lines)

By default, the number of lines listed on each page of the listing is sixty (60) lines
per page. The –fpagesize=n option can reduce or increase that as needed. The value
of n should not be less than twenty (20).

52 Systems/C++



The –fshowinc and –fno showinc options (enable/disable inc luding
source from #include files in listing)

If a listing of the compilation is requested, the –fshowinc option may be used to
request that source lines from #include files be included in the listing.

–fshowinc is the default.

–fno showinc can be used to reduce the size of the listing file by not including source
from #include files.

The –fstructmap and –fno structmap options (enable/disable includ-
ing struct layout information in the listing)

If a listing of the compilation is requested, the –fstructmap option may be used to
request that a “structure map” appear at the end of the listing. This structure
map will contain information regarding the layout of the structures defined in the
program source, including field offsets and lengths.

–fstructmap is the default.

–fno structmap can be used to reduce the size of the listing file by not producing
the structure map.

The –fstructmaphex and –fno structmaphex options (structure lay-
out information should/shouldn’t be displayed in hex)

If the –fstructmap option is in effect, –fstructmaphex will cause the offsets to be
displayed using hexadecimal values instead of decimal ones. –fno structmaphex in-
dicates the values should be displayed in decimal.

The –frent option (generate re-entrant code)

The –frent option instructs the compiler to generate re-entrant code. When –frent is
enabled, file-scoped external and static variables will be re-entrant by default. The
–frent option is enabled by default.

The –fmaxerrcount=N option (limit the number of reported errors)

The –fmaxerrcount=N option places a limit on the number of errors the compiler will
report. When the specified number of errors have been encountered, compilation
stops.

Systems/C++ 53



The –Uname option (undefine predefined #define values)

DCXX predefines the following values as well as the standard ANSI ones:

Macro Name Replacement Value
COUNTER A unique value at each reference, begining with 0
SYSC 1

SYSC VER Compiler version number
SYSC ASCIIOUT Defined if –fasciiout enabled

SYSC ANSI BITFIELD PACKING Defined if –fansi bitfield packing enabled
BFP Defined if –fieee is enabled
I390 1
370 1

SYSC LP64 Defined if –mlp64 enabled
LP64 Defined if –mlp64 enabled

SYSC ILP32 Defined if –milp32 enabled
ILP32 Defined if –milp32 enabled
ptr31 Defined to be ptr32, equivalent to ptr31
PTR31 Defined to 1
PTR32 Defined if PTR31 is defined

The –U option can selectively remove these definitions, or any others that were
added via the command line.

The –fincstripdir option (remove directory components from #in-
clude names)

The –fincstripdir option will cause the compiler to remove any directory components
from a #include file name before any other processing occurs. This option is useful
for compiling source with Systems/C and other compilers which act similarly. For
example, if the source contains:

#include <sys/parm.h>

and the –fincstripdir option is enabled, the result would be same as if the source
contained

#include <parm.h>

54 Systems/C++



The –fincstripsuf option (conditionally remove suffixes from #in-
clude names)

The –fincstripsuf option causes the compiler to retry failed open attempts for #include
files. As the compiler is searching for a #include file, it will first try to open the file
with the given suffix. If –fincstripsuf is specified, the compiler will then remove any
suffix and try again to open that file. This option is helpful on OS/390 and z/OS
when moving from other C compilers to Systems/C.

The –fincrepsuf option (conditionally replace suffixes from #include
names)

The –fincrepsuf option is similar to the –fincstripsuf option in that it causes the
compiler to first try to locate #include files using the given suffix. If this attempt
fails, it is replaced with “.h”, as if –faddh were specified.

The –fmargins[=m,n] option (specify margins for source lines)

The –fmargins option specifies columns from the input file which are examined for
input to the compiler. The compiler ignores text that does not fall in the specified
range.

The –fnomargins option is the default option, and specifies that each entire source
line is to be considered as input.

The –fmargins option, with no arguments is equivalent to –fmargins=1,72.

The –fmargins=m,n form of the option specifies the starting and ending column to
be considered as input. m must be greater than 0 and less than 32761. If ,n is
specified, n must be greater than m and less than 32761. If ,n is not specified, the
compiler uses the remainder of the input line.

–fmargins can be useful when copying source from a mainframe environment where
sequence numbers are preserved in the input lines.

–fmargins implies –ftrim.

The –fmesg=style option (specify message style)

The –fmesg=style option is used to indicate which style of message format the com-
piler should employ. Currently, three message styles are supported, microsoft,
sysc and ext.

Systems/C++ 55



If the microsoft style is specified, as in –fmesg=microsoft, the messages produced
by the compiler will look similar to those produced by the Microsoft VC++ com-
piler and are suitable for using with Microsoft’s DevStudio integrated development
environment. This is the default style on Windows hosts.

If the sysc style is specified, the message format will be the Systems/C message
format. This is the default format on UNIX, OS/390 and z/OS hosts.

If the ext style is specified, messages will be in an extended format, and will include
extra information regarding the error or warning.

The –fasciiout option (char and string constants are ASCII)

Normally, the character set employed for character and string constants is EBCDIC.
Specifying the –fasciiout option causes the compiler to use ASCII values for character
and string constants. Note that the Systems/C and Systems/C++ libraries don’t
support ASCII values for character-specific functions. Also, the –fasciiout option
does not affect character or string constants specified in the C++ preprocessor or
#pragma statements.

If –fasciiout is specified, the C++ preprocessor will predefine the SYSC ASCIIOUT
macro to the value 1. Otherwise, SYSC ASCIIOUT will not be defined.

–fasciiout is enabled by default when –flinux is specified.

If –fnoasciiout is present after –flinux on the commandline then DCXX will generate
EBCDIC string constants on Linux.

The –fdollar option (alloc dollar sign character in identifier s)

According to standard C++, the dollar sign character ($) is not allowed in C++
identifiers or preprocessor macro identifiers. When the –fdollar option is specified
DCXX will allow the dollar sign character in identifiers and macros.

Use –fno dollar to disable this option.

The –fwchar ucs option (indicate that wide character constants are
UCS-2 or UCS-4.)

The –fwchar ucs option indicates that wide character string and character constants
are to be generated in the UCS (Universal Character Set) encoding rather than the
target ASCII or EBCDIC encoding.

Wide character char/string literals are specified with the L’x’ and L"xxx" prefixes.
Unicode literals can be defined – regardless of the setting of –fwchar ucs – using

56 Systems/C++



u’x’ (UCS-2), U’x’ (UCS-4), u8"xxx" (UTF-8), u"xxx" (UTF-16), and U"xxx"
(UCS-4).

The UCS-2 character set is used when the –fwchar=2 option is specified, UCS-4 will
be used when –fwchar=4 is specified.

–fwchar ucs is enabled by default when the –fztpf option is specified. On the z/TPF
platform, normal character strings are EBCDIC, but wide character strings are
UCS-4.

–fwchar ucs can be disabled using the –fnowchar ucs option.

The –fwchar=n option (specify the size of wchar t)

The –fwchar=n option specifies the size, in bytes, of the wide character type,
wchar t. By default, the size of wchar t is assumed to be 4 bytes. Allowed values
for n are 2 and 4 (for unsigned short or unsigned long declarations of wchar t.)

The Systems/C library uses a size of 4 for wchar t. If another size is selected, the
wide character related functions in the Systems/C library may not operate correctly.

The –fsname=name option (specify section names)

Each compilation requires section names for the various code and sections the com-
piler will produce. These names must be unique for the load module in which the
generated object will participate. By default, the various section names are taken
from the source file name; which can produce duplicate section names in some cir-
cumstances.

The –fsname=name option is used to specify what the section name should be,
allowing for the unique specification of section names and avoiding duplicates. Name
must begin with an alphabetic letter. Name must be 1023 characters or less.

If the specified name is too long, the compiler will truncate it.

The compiler generates both upper-and-lower case versions of the name for various
CSECTs, so the name should not be considered case-specific.

The –fsname option is ignored for linux and z/TPF compilations.

The –fnosname option (allow PLINK to choose unique section names)

When the –fnosname option is specified, the compiler produces assembler source
that uses names PLINK later recognizes at pre-link time. In this case, PLINK
maps these names to a name that is unique for the load module. In this way,

Systems/C++ 57



individual compilations need not be concerned over the choice of section name.
PLINK guarantees this compilation will have a unique name in the resulting load
module.

Using –fnosname requires the use of PLINK before final linking of the load module
to properly map the various section names.

–fnosname is enabled by default in Systems/C++. If the C++ compiler is being
used without PLINK and CSECT names should be automatically generated based
on the filename then –fsname (giving no section name) should be specified.

The –fsnameprefix=char option (specify section name prefix)

When section names are generated, a prefix character is added. The default prefix
character is “@”, so that the code CSECT for a source named “test.c” will be
“@TEST”. Using the –fsnameprefix=char option, you can specify an alternative prefix
character. If no character is provided (i.e., –fsnameprefix=) then the section names
are generated without a prefix.

The –fieee option (BFP format floating point values and constants)

The –fieee option instructs the compiler to use the newer Binary Floating Point
format for floating point constants and use the new BFP-related instructions for
floating point arithmetic calculations. Binary Floating Point format is equivalent
to the IEEE floating point format used in many other hardware implementations.

When the –fieee option is enabled, DCXX will convert floating point constant values
into their IEEE format for emission in the generated assembler source. Also, DCXX
will use IEEE arithmetic operations for any floating point operations performed by
the compiler. Lastly, DCXX will generate the BFP instructions for any arithmetic
performed at run-time.

If –fieee is enabled, DCXX will define the macro BFP to "1". C programs may
test for the use of IEEE instructions and constants by testing for the BFP macro.

The floating point format can be explicitly specified on a per-variable basis using
the type modifiers Ieee and Hexadec. For example, the type Ieee double will
hold IEEE values regardless of the setting of –fieee. Be aware that intermediate
operations will generally be performed using the floating point format specified on
the command line, regardless of the type of variable the value will ultimately be
stored in. So there will be a potential for rounding error and poor performance
from excessive conversions when using a different format than the one specified on
the command line.

The Systems/C and Systems/C++ libraries have been designed (since version 2.10)
to support IEEE and HFP floating point formats at the same time. Most C++ func-
tions are defined as two variants, one that uses Ieee float, and another that uses

58 Systems/C++



Hexadec float, and standard C++ overload resolution selects the right function.
For C library functions, the C library provides a wrapper function that detects if the
calling function was compiled with –fieee or not and calls the appropriate variant
based on that determination.

The –flinux option enables –fieee by default.

The –fmrc/–fnomrc options (mainframe or UNIX-style return codes)

The –fmrc and –fnomrc options alter the return code returned by DCXX.

Normally, on cross-platform (UNIX and Windows) hosts, DCXX returns a typical
UNIX-style return code, 0 for success or warnings, 1 for errors. And, on OS/390
and z/OS, DCXX returns a mainframe-style return code, 0 for no warnings, 4 for
warnings, 8 for errors and 12 for catastrophic failure.

These defaults can be altered by using the –fmrc and –fnomrc options. When –fmrc
is enabled, DCXX will return mainframe-style return codes; allowing for the use of
mainframe-style return codes on a cross-platform host. When –fnomrc is enabled,
DCXX will return UNIX-style return codes, allowing for the use of UNIX-style
return codes on OS/390 or z/OS.

The –fpatch/–fno patch options (generate a patch area)

The –fpatch and –fno patch options control the generation of a per-compilation
patch area. If –fpatch is enabled, the compiler will generate a patch area named
@@PATCH AREA, which appears at the end of the CODE section. Each 4K region of
text in the generated assembler code will contain an A-CON reference to the patch
area, so it can be readily addressed. Typically, it will appear with other constant
definitions, and will look similar to:

DC A(@@PATCH_AREA)

The size of the generated patch area is determined by computing a percentage of
the size of the generated code, with a minimum size of 32 bytes and a maximum size
of 4096 bytes. The default percentage is 10%, but can be altered by the –fpatchmul
option.

The –fpatchmul=n option (alter the size of the patch area)

The –fpatchmul=n option changes the percentage multiplier used in the computation
of the size of a generated patch area. The size of the generated patch area is
computed as a percentage of the size of the generated code. The default percentage

Systems/C++ 59



is 10%. To increase the size of the generated patch area, increase the –fpatchmul
value, to decrease it, decrease the –fpatchmul value. Note that the minimum size
for a patch area is 32 bytes, and the maximum is 4096 bytes. The –fpatchmul=n
option implies the –fpatch option.

The –flinux option (enable Linux/390 and z/Linux code generation)

The –flinux option instructs DCXX to generate assembler source suitable for use on
Linux/390 or z/Linux. The assembler source will be generated and formatted to be
assembled by the Linux/390 or z/Linux assembler, as. Furthermore, some HLASM
specific features and related options will be disabled and may produce warnings if
used.

This option operates on any host supported by Systems/C++, thus, it is possible
to generate Linux/390 assembler source on any supported platform.

The –flinux option implies the –fieee option. On Linux/390 and z/Linux floating
point values and constants are in BFP (IEEE) format.

The –flinux option implies the –fasciiout option. On Linux, character values are in
ASCII.

If the –mlp64 option is enabled, the generate assembler source is intended for use
on z/Linux, and should be assembled with the z/Linux as assembler.

The –fvisibility=setting option (set ELF object symbol visibility)

When generating code for either Linux, z/Linux or z/TPF, the compiler produces
assembly source to be assembled with the GNU GAS assembler. That assembler, in
turn, produces ELF object files.

An ELF object file contains symbols that have a visibility attribute. This attribute
controls the visibility of the symbols during linking. For example, a symbol can
be “hidden”, which means that it is internal to the object and can’t be referenced
during linking.

There are four valid values for the visibility, default, internal, hidden and protected.

This feature should be employed for building shared objects, to manage the symbols
exported by the shared objects, avoiding symbol clashes.

Unless otherwise specified in the source, the value of the –fvisibility setting applies to
all the symbols in a compilation. The attribute ((visibility ("setting")))
attribute can be used to specifically set a symbol’s visibility.

The default visibility indicates that the symbol is visible to other modules.

60 Systems/C++



The hidden visibility indicates the symbol is “hidden” within a shared object. Two
symbols of the same name with “hidden” visibility refer to the same data if they
are linked into the same shared object.

The internal visibility is similar to hidden, but in some ELF environments can
have other special meaning, as afforded by the hardware processor. internal also
indicates that a function can never be invoked from “outside” a shared object, which
allows the compiler some flexibility in optimizations.

The protected visibility indicates that references to a symbol will only be resolved
within the defining module. The declared symbol cannot be overridden by a same-
named symbol in another module.

The –fsigned char/–funsigned char options (Control if char is signed
or unsigned by default)

The –fsigned char option instructs the compiler to treat the char data type as
signed (range −128 to 127) unless the keyword unsigned is explicitly specified.
The –funsigned char option instructs the compiler to treat the char data type as
unsigned (range 0 to 255) unless the keyword signed is explicitly specified. The
default is –funsigned char.

The –fsuppress vtbl option (suppress generation of C++ vtable in-
formation)

In most situations there is a heuristic for deciding which compilation unit provides
the virtual function table for a class to avoid duplicate definitions. However, in the
case of a class with no virtual functions which inherits from a base class with virtual
functions, this heuristic breaks down.

By default the compiler generates the virtual function table but marks it as pri-
vate to this compilation unit so there are no conflicts. The –fsuppress vtbl option
instructs the compiler to not generate virtual function table information at all in
this compilation unit for classes where it is unclear which compilation unit should
provide the virtual function table.

The –fforce vtbl option (force generation of C++ vtable informa-
tion)

The –fforce vtbl option instructs the compiler to generate (and export as external
data) virtual function table information for all defined classes where it is unclear
which compilation unit should provide the virtual function table.

Systems/C++ 61



The –finstantiate=mode option (set the template instantiation mode)

The –finstantiate=mode option selects which heuristic will be used by the compiler
to decide which templates should be instantiated in this compilation unit. See the
section Template Instantiation (page 20) for a detailed discussion.

The –fdistinct template signatures/–fno distinct template signatures
options (enable/disable distinct template signatures)

The –fdistinct template signatures option is the default in most modes and instructs
the compiler to generate unique symbols for functions generated through template
instantiation. –fno distinct template signatures causes the compiler to treat a tem-
plate instantiation as though it were a normal function and is in effect by default if
the –fc370 option is specified.

For example, consider the following two functions:

void func(int x) {
. . .

}

template <class A>
void func(A x) {

. . .
}

If –fno distinct template signatures is in effect then the non-template version can
serve as a specialization of the template func<int> even if the compiler does not
know that func is a template, otherwise func<int> is distinct from the non-template
version.

The –fimplicit include/–fno implicit include options (enable/disable
implicit inclusion for template libraries)

Some template libraries are distributed as a collection of .h files that contain the
template declarations and .c files that contain the template definitions, with no
explicit connection between the two files other than their filenames. That is, there
is no #include "foo.c" directive within foo.h. The compiler is then responsible
for finding any needed template definitions.

When –fimplicit include is specified, any time a definition for a template that was
declared in a .h file is requested, DCXX will search for a file in the same directory
with the same name, but an extension of .c instead. Then that file will be processed
using the regular template instantiation technique, as if it had been #included.

62 Systems/C++



The –ftempinc[=directory]/–fno tempinc options (enable/disable tem-
plate instantiation method

–ftempinc is an alternative to –fimplicit include for some template libraries. It hon-
ors roughly the same language-level semantics but has a different approach to tem-
plate instantiation.

Instead of processing the .c file as if it had been #included, –ftempinc will cause a
file to be created in the tempinc directory that has the same name as the .h file, but
the extension of .C, containing C++-language source that explicitly references the
.h and .c files to instantiate the templates. The tempinc directory can be specified
with –ftempinc=directory or it will default to “tempinc”.

After the compiler has run on all of the source files within your project, you will need
to run the compiler on each of the generated source files within the tempinc directory.
This second pass generates the definitions for templates which were requested in your
project’s source.

During this second pass, additional template dependencies may be detected. If you
compile the second pass with –ftempinc as well, then you must run DCXX again
on any tempinc file that changes during the second pass. Or you can run the second
pass with –fimplicit include instead, and it will use regular template instantiation
methods within the tempinc pass, which may result in some duplicate definitions.

The –fnonstd qualifier deduction/–fno nonstd qualifier deduction op-
tions (enable/disable non-standard qualifier deduction)

The –fnonstd qualifier deduction and –fno nonstd qualifier deduction options con-
trol whether nonstandard template argument deduction should be performed in the
qualifier portion of a qualified name.

The –guiding decls/–fno guiding decls ioptions (Imply template in-
stantation with a specific declaration)

The –fguiding decls option indicates that the compiler should support “guiding dec-
larations” of template functions. A guiding declaration is the declaration of a func-
tion that matches a specific instance of a template and no function definition is
provided. Such a declaration indicates that the compiler should generate the tem-
plate function within the current compilation unit.

For example:

template <class T> void func(T) ...
...
void func(int);

Systems/C++ 63



The declaration of void func(int); indicates that the compiler should instantiate
the template function func with an int argument within the current compilation
unit.

If –fno guiding decls is enabled, then the function declaration is considered a sepa-
rate function not associated with the template which would require its own function
definition.

The –fexceptions/–fno exceptions options (enable/disable support
for C++ exceptions)

The C++ language provides features for passing exceptions in a program to bypass
the regular flow of execution for certain events. Most importantly are the try,
catch and throw keywords. The –fexceptions and –fno exceptions options control
the compiler’s support for these features. When –fno exceptions is specified these
features are disabled and, if used, will generate an error message.

The –frtti/–fno rtti options (enable/disable C++ Run-Time Type
Info)

C++ provides Run-Time Type Information through the keyword typeid, which
evaluates to a typeinfo class which can be used to determine certain information
about the class that may change at run-time. Also provided is the dynamic cast
operator which implements run-time casts from a base class to a derived class with
type checking. This feature is useful for polymorphic classes where it is necessary
to recover the type of the derived class from a pointer to a base class.

The –frtti and –fno rtti options control support for C++ Run-Time Type Informa-
tion. When –fno rtti is specified, use of the typeid keyword is an error.

The –farray new and delete/–fno array new and delete options (en-
able/disable new[] and delete[])

Ordinarily when an array new (i.e., new int[10]) is processed by the compiler
a call to void *operator new[](size t) is generated. Similarly, a call to void
operator delete[](void *) is generated for array delete (i.e., delete[]) ex-
pressions. –fno array new and delete can be specified to instruct the compiler that
there are no separate new[] or delete[] functions. The source code may still con-
tain array new and delete expressions but the compiler will generate calls to the
regular void *operator new(size t) and void operator delete(void *) func-
tions rather than specialized array versions.

64 Systems/C++



The –fexplicit/–fno explicit options (enable/disable explicit key-
word)

The –fexplicit and –fno explicit options control support for the C++ explicit key-
word. The explicit keyword is applied to a constructor to mark that it may not be
implicitly invoked. For example, if class A has an explicit constructor that takes
an integer as its only argument then A x(123); will generate an explicit constructor
call, but A x = 123; will be considered implicit and disallowed. –fno explicit causes
the compiler to no longer recognize the explicit keyword for compatibility with
older compilers that do not support it.

The –fnamespaces/–fno namespaces options (enable/disable names-
pace support)

C++ provides a namespace feature to facilitate the separation of a program into
logical sections (namespaces) which can use the same name to refer to separate
constructs. The keyword namespace defines a new namespace and the keyword
using instructs the compiler to use a certain namespace for symbol lookup. The
–fno namespaces option disables this feature. See the section Namespace Support
(page 18) for more information.

The –fold for init option (variables in for() inits follow pre-ANSI
semantics)

When the –fold for init option is in effect any variables declared in the initialization
of a for statement will be treated as if they occurred in the scope surrounding the
for statement. For example,

{ . . .
for (int i = 0; i < 10; i++)

. . .
}

is equivalent to

{ int i;
. . .
for (i = 0; i < 10; i++)

. . .
}

Systems/C++ 65



The –fnew for init option (variables in for() inits follow ANSI se-
mantics)

The –fnew for init option instructs the compiler to treat any variables declared
in the initialization of a for statement to be put in a scope specific to the for
statement (as per the ANSI standard). The example from –fold for init would then
be equivalent to:

{ . . .
{

int i;
for (i = 0; i < 10; i++)

. . .
}

}

66 Systems/C++



The –fold specializations/–fno old specializations options (enable/dis-
able old-style template specializations)

Older C++ compilers would accept specializations of a template function without
the template<> syntax. The –fold specializations option instructs the compiler to
accept these definitions as template specializations. The –fno old specializations
option instructs the compiler to treat them as regular functions distinct from the
template rather than template specializations (in which case they may be unreach-
able).

An old-style template specialization takes the following form:

template <class A>
void func(A x) { ... }

void func(int x) { ... }

The new template specialization syntax takes the following form:

template <class A>
void func(A x) { ... }

template<>
void func(int x) { ... }

The –fextern inline/–fno extern inline options (enable/disable extern

inline)

The extern inline combination on a function tells the compiler to generate an
externally-visible symbol for the function and also to try to inline it where appro-
priate. In order for a function to be inlined it has to be defined in every compilation
unit so typically it is implicitly static to avoid any duplicate symbols. extern
inline instructs the compiler to attempt to generate the externally-visible symbols
even if there may be duplicate symbols. If –flinux is specified then the linker is
instructed to discard all but one of the definitions. On other platforms multiple
definitions and/or linker warnings may result.

extern inline is obviated by the modern practice of weak linking (available on all
supported platforms now in some way or another). The compiler generally produces
an externally-visible symbol for an inline function, but marks that symbol as a
“weak definition.” In this way the linker is exposed to all of the multiple definitions
and it can remove the redundant ones, so in the end all non-inlined calls will point
to the same function, without the use of explicit extern inlining.

Systems/C++ 67



Also note that this option has no effect if extern inline does not explicitly occur
in the source code. The default behavior is always applied to inline functions that
are not also marked extern.

If the –fno extern inline option is specified then the compiler will generate an error
message if extern inline is used.

The –fshort lifetime temps/–flong lifetime temps options (enable/dis-
able long lifetime temporaries)

In cfront and older C++ compilers temporaries would not be destroyed until the
next end of scope. The standard, however, specifies that temporaries be destroyed
at the end of the full expression. –flong lifetime temps instructs the compiler to
treat temporaries in a fashion compatible with cfront, whereas –fshort lifetime temps
instructs the compiler to treat temporaries according to the standard.

The –fbool/–fno bool options (enable/disable bool support)

The –fbool and –fno bool options control compiler support for the bool keyword.
bool specifies a data type that can hold just two values, true, and false. C++
code written before the bool keyword was available often included the code typedef
enum { false, true } bool;, which conflicts with the compiler’s keyword.

The –fwchar t keyword/–fno wchar t keyword options (enable/dis-
able wchar t support)

The –fwchar t keyword and –fno wchar t keyword options control compiler support
for the wchar t keyword. wchar t specifies a data type that can hold characters that
are several bytes wide (depending upon the –fwchar=n setting). There exists code
which provides its own definition of wchar t, similar to typedef unsigned short
wchar t;, which may require –fno wchar t keyword to compile without changes.

The –ftypename/–fno typename options (enable/disable typename sup-
port)

The –ftypename and –fno typename options control compiler support for the typename
keyword. The C++ standard provides the typename keyword to help make it clear
which template parameters are used as types.

68 Systems/C++



The –fimplicit typename/–fno implicit typename options (enable/dis-
able implicit template param type determination)

The –fimplicit typename and –fno implicit typename options control whether the
compiler will attempt to determine, from context, if a template parameter is a type
or nontype. This may be necessary for older code which does not use the typename
keyword explicitly to mark type template parameters.

The –fdep name/–fno dep name options (enable/disable dependent
name processing)

When –fdep name is specified, dependent name processing is enabled and the com-
piler will perform a separate lookup of names in templates when the template is
instantiated and when it is parsed (if –fparse templates is specified). For details see
the section Dependent Name Processing (page 18.)

The –fparse templates/–fno parse templates options (enable/disable
parsing templates)

The –fparse templates and –fno parse templates options control the parsing of tem-
plates in their generic form (i.e., even if they are not instantiated). If –fparse templates
is specified then the templates will be parsed even if they are never instantiated,
otherwise the function will be ignored until instantiated. This can have an effect on
dependent name processing and error reporting.

The –fspecial subscript cost/–fno special subscript cost options (en-
able/disable special operator costs)

When –fspecial subscript cost is specified the compiler will preferentially use an over-
loaded operator[] over an operator* for array accesses.

The –falternative tokens/–fno alternative tokens options (enable/dis-
able C++ alternative tokens)

The –falternative tokens and –fno alternative tokens options control support for
C++ alternative tokens. These include digraphs such as :> and operator keywords
such as and, bitand, etc.

Systems/C++ 69



The –fenum overloading/–fno enum overloading options (enable/dis-
able enum overloading)

The –fenum overloading and –fno enum overloading options control support for
overloading operations on enum-type operands. If enum overloading is disabled then
the compiler will always use generic built-in operators for operations on enums.

The –fconst string literals/–fno const string literals options (enable/dis-
able const strings)

If –fconst string literals is specified then the compiler will treat string literals as
const by default. If –fno const string literals is specified then the compiler will
treat string literals as non-const (mutable) by default.

The –fimplicit extern c type conversion/–fno implicit extern c type conversion
options (Allow implicit conversions between C and C++ functions)

In many implementations, the function linkage for C++ functions is different than
extern "C" functions. Because of this, conversions between those two functions
would not be allowed.

On platforms where C++ and extern "C" linkage is the same, the compiler can
implicitly convert between the two function type.

The –fimplicit extern c type conversion option enables this conversion, and is set for
z/TPF, Linux and Systems/C++ runtime environments.

In the LE runtime environment (IBM compatibility), the linkages are not the same,
so the –fno implicit extern c type conversion option is set.

The –fclass name injection/–fno class name injection options (enable/dis-
able class name injection)

The –fclass name injection and –fno class name injection options control whether
the class’s name will be injected into its own scope. Older implementations of C++
did not inject the class name into its own scope.

The –farg dependent lookup/–fno arg dependent lookup options (en-
able/disable arg-dependent lookup)

The –farg dependent lookup and –fno arg dependent lookup options control whether
argument-dependent lookup is used for unqualified names in function calls of over-
loaded functions. For more information see the section Argument Dependent Lookup
(page 19.)

70 Systems/C++



The –ffriend injection/–fno friend injection options (enable/disable
friend namespace injection)

If –ffriend injection is specified then a function or class declared only in friend
declarations is visible. If –fno friend injection is specified then a function or class
declared only in friend declarations is not visible.

The –flate tiebreaker option (avoid the use of qualifiers in overload
resolution)

The –flate tiebreaker option instructs the compiler to ignore const and/or volatile
qualifiers during overload resolution unless more than one candidate is found and
the qualifiers are the only means of distinguishing.

The –fearly tiebreaker option (use qualifiers in overload resolution)

The –fearly tiebreaker option instructs the compiler to use const and/or volatile
qualifiers during overload resolution, causing an overloaded function to match only
if the qualifiers match. This is the standard behavior.

The –fnonstd using decl/–fno nonstd using decl options (enable/dis-
able non-standard using)

The –fnonstd using decl and –fno nonstd using decl options control whether the
compiler will accept a nonmember using-declaration that specifies an unqualified
name.

The –fvariadic macros/–fno variadic macros options (enable/disable
C99 variadic macros)

The –fvariadic macros and –fno variadic macros options control support for C99-
style variadic macros. For example,

#define printf(...) fprintf(new_output, __VA_ARGS__)

The –fextended variadic macros/–fno extended variadic macros op-
tions (enable/disable GCC variadic macros)

The –fextended variadic macros and –fno extended variadic macros options control
support for special GCC extensions to variadic macros. GCC accepts “args...”

Systems/C++ 71



to specify that args is the name of the variadic argument, rather than VA ARGS .
GCC also accepts an empty variadic macro argument (the standard requires at least
one element in its list). In addition, they have an extension to the paste operator
(##) if it occurs between a comma and a variadic argument, then the comma will
be elided if the variadic argument is empty. So the macro in the following example
will emit proper syntax even if called with only one argument:

#define FOO(x, ...) bar(x, ## __VA_ARGS__)

Note that GCC variadic macros are enabled by default if –flinux or –fztpf is specified.

The –fbase assign op is default/–fno base assign op is default options
(enable/disable copy assignment from base)

The –fbase assign op is default and –fno base assign op is default options control
whether the compiler will accept a copy constructor which takes a base class as
its argument as the default copy assignment operator for the derived class.

The –fignore std/–fno ignore std options (enable/disable std names-
pace special treatment)

The –fignore std and –fno ignore std options control whether the std namespace
will be ignored (treated as a synonym for the global namespace).

The –version option (print the compiler version number on STD-
OUT and exit)

The –version option causes the compiler print the version number on the STDOUT
output stream and then exit. When –version is encountered, no other processing
occurs.

The –famode=val option (specify runtime addressing mode)

The –famode option is used to indicate to the compiler what the runtime addressing
mode (AMODE) environment will be. Valid options for val are 24, 31, any and 64.

This option is most meaningful when –mlp64 is also specified. When –mlp64 is spec-
ified, by default, the compiler generates code which assumes the runtime AMODE
will be 64. Thus, the compiler can safely employ the LOAD-ADDRESS (LA) in-
struction to evaluate pointer arithmetic.

72 Systems/C++



If –famode is set to anything other than 64, the compiler will not use LOAD-
ADDRESS for pointer arithmetic when –mlp64 is enabled. This allows the compiler
to generate z/Architecture code which can be executed in any runtime environment.

Also - when –mlp64 is specified for Systems/C++ compiles, the compiler decorates
the prologue macro for the main() function to indicate to the Systems/C runtime
library that the program should run in an AMODE=64 environment. If –famode
specifies an val other than 64, the compiler will not indicate that the program should
be run in an AMODE=64 environment.

When –mlp64 is enabled, the SYSC LP64 preprocessing symbol will be defined.

The –march=zN option (enable z/Architecture compilation)

The –march=zN allows the compiler to generate code that employs instructions
available on the edition N of the z/Architecture hardware architecture.

The –march=z0 option is implied when –mlp64 or –fztpf is specified.

However, for situations where –milp32 is specified, this option allows the compiler
to take advantage of the architecture improvements provided in the z/Architecture
specifications for 32-bit programs. These include all of the improvements made avail-
able in ESA/390 architectures as well as those provided in the specified z/Archtecture
definition.

The –march=zN option should not be specified if your program is intended to operate
on older (pre-z/Architecture) hardware.

For given –march=zN settings, the following table shows which facilities will be
enabled:

z0 –msquare-root
–mhfp-extensions
–mfp-support-extension
–mfp16

z3 –mhfp-multiply-add
–mlong-displacement

z5 –mextended-immediate
z6 –mdecimal-floating-point-facility

–mpfpo-facility
–mfloating-point-support-sign-handling-facility
–mfpr-gr-transfer-facility

z7 –mgeneral-instructions-extension
z9 –mload-store-on-condition

–mdistinct-operands
–mhigh-word-facility
–mfp-extensions

Systems/C++ 73



z10 –mmisc-instruction-extensions-facility-1
–mtransaction-facility

z11 –mdecimal-floating-point-packed-conversion-facility

z12 –mmisc-instruction-extensions-facility-2

z13 –mmisc-instruction-extensions-facility-3

The –march=esa390 and –march=esa390z options (enable ESA/390
compilation)

The –march=esa390 option allows the compiler to generate code that employs in-
structions available on ESA/390 architectures.

If no other –march option is specified, the compiler generates code suitable for a
370-class machine.

When the –march=esa390 option is specified, the compiler will generate code that
makes use of the immediate operand instructions and the string-assist instructions.
It will also assume there are 16 floating-pt registers available.

The –march=esa390z option enables supprot of ”ESA/390 mode under z/Architecture”
instructions. These instructions were added to the ESA/390 specification when op-
erating in ”ESA/390 mode” on z/Architecture hardware. This includes support for
the MULTIPLY LOGICAL, DIVIDE LOGICAL, ADD LOGICAL WITH CARRY
and SUBTRACT LOGICAL WITH CARRY as well as other instructions.

Depending on your runtime architecture environment, specifying –march=esa390
may allow your programs to execute faster.

The –march=esa390 option should not be specified if your program is intended to
operate on older (pre-ESA/390) hardware.

The –milp32 option (32-bit compilation)

When –milp32 is specified, the compiler treats int, long and pointer data types as
32-bit data types, the ILP32 compilation model.

This is the default, and is historically the compilation model used in mainframe
environemnts.

The –mlp64 option (64-bit compilation)

When –mlp64 is specified, the compiler treats long and pointer data types as 64-bit
data types, the LP64 compilation model.

74 Systems/C++



The –mlp64 option implies the –march=z option.

For the Systems/C prologue macro, the compiler will add the ARCH=ZARCH option
to the prologue macro invocation, indicating the generate prologue and epilogue
should assume z/Architecture instructions and 64-bit values. If the main() function
is compiled with the –mlp64 option enabled, and no other –famode is specified, the
Systems/C runtime environment will enable a 64-bit AMODE.

The code generated when –mlp64 is specified can be controlled using the –famode
option. If –famode=any, –famode=31 or –famode=24 is specified along with –mlp64,
the compiler will not use the LOAD-ADDRESS (LA) instruction for pointer arith-
metic. The LA instruction is dependent on the AMODE at runtime, and thus can’t
be used to perform 64-bit addressing calculations. If any of these –famode options
is specified, the compiler will use 64-bit logical arithmetic instructions to perform
addressing arithmetic. This allows the resulting code to operate in any runtime
environment.

If –flinux is specified, the assembler source produced by the compiler should be
assembled with the 64-bit z/Linux version of the as assembler.

The chapter on z/Architecture programming contains more detailed information
about the compiler’s z/Architecture support.

The –mfp16 and –mfp4 options (enable/disable use of extended FP
registers)

The –mfp16 and –mfp4 options allow you to override the setting for whether or
not the extended FP registers are available. When –mfp16 is used, FP registers
numbered 0 to 15 are assumed to be available. When –mfp4 is used, only FP
registers 0, 2, 4, and 6 will be used. –mfp4 is the default, but many of the settings
such as –march=z will automatically set –mfp16 because the host platform can be
assumed to support these options. To override this setting, the –mfp4 must occur
after any other architecture specifications on the commandline.

The –mlong-double-128 and –mlong-double-64 options (enable/disable
128-bit long double characteristics)

When –mlong-double-128 is specified, the compiler treats a long double data type
as 128 bits in size with the characteristics associated with the extended floating
point data type.

When –mlong-double-64 is specified, the compiler treats the long double data type
as 64 bits, with the same characteristics as the double data type.

The –mlong-double-128 option is the default mode of operating.

Systems/C++ 75



The –fztpf option enables –mlong-double-64 to match the configuration of the envi-
ronment there.

If –mlong-double-128 is specified, the compiler predefines the LONGDOUBLE128 pre-
processor macro. If –mlong-double-64 is specified, LONGDOUBLE64 will be prede-
fined.

The –mmvcle and –mno-mvcle options (enable/disable use of the
MVCLE/CLCLE instruction)

The MVCLE (MOVE LONG EXTENDED) and CLCLE (COMPARE LOGICAL LONG EXTENDED)
instructions where introduced as part of the “Compare-and-Move-Extended Facil-
ity” for the ESA/390 architecture.

By default, the MVCLE and CLCLE instructions are not used, instead a loop of MVC
or CLC instructions is generated. Enabling the –mmvcle option indicates that the
compiler can use the MVCLE and CLCLE instructions in generated code.

The –mdistinct-operands and –mno-distinct-operands options (en-
able/disable use of distinct-operands facility instructions)

The 9th edition of the z/Architecture hardware architecture introduced the distinct-
operands facility instructions. These instructions typically have 3 operands, a target
and two source operands.

Because of the flexibility this format provides, the compiler can generate better code
if it can take advantage of these instructions.

The –mdistinct-operands option allows the compiler to use the instructions from the
distinct-operands facilty.

The –mextended-immediate and –mno-extended-immediate options
(enable/disable use of extended-immediate facility instructions)

The 5th edition of the z/Architecture hardware architecture introduced the extended-
immediate facility which provides several instructions to improve the use of imme-
diate operand values.

The –extended-immediate option enables the use of these instructions.

The –mno-extended-immediate option can be used to disable the use of these in-
structions.

76 Systems/C++



The –mload-store-on-condition and –mno-load-store-on-condition op-
tions (enable/disable use of load-store-on-condition facility instruc-
tions)

The 9th edition of the z/Architecture architecture introduced the load-store-on-
condition facility instructions, which are LOCR, LOCGR, LOC, LOCG, STOC, STOCG.

If –mload-store-on-condition is enabled, the compiler will take advantage of those
instructions where it can.

The –mhfp-multiply-add and –mno-hfp-multiply-add options (en-
able/disable use of HFP multiply-and-add facility instructions)

The –mhfp-multiply-add option tells DCXX it can use the instructions in the
HFP multiply-and-add/subtract facility, which was added to the 3rd edition of
z/Architecture. These instructions are also enabled by –march=z3 and above, and
can be disabled by –mno-hfp-multiply-add.

The –mlong-displacement and –mno-long-displacement options (en-
able/disable use of long-displacement facility instructions)

The –mlong-displacement option tells DCXX it can use the instructions in the
long-displacement facility, which was added to the 3rd edition of z/Architecture.
These instructions are also enabled by –march=z3 and above, and can be disabled
by –no-long-displacement.

The –mgeneral-instructions-extension and –mno-general-instructions-extension
options (enable/disable use of general-instructions-extension facility
instructions)

The –mgeneral-instructions-extension option tells DCXX it can use the instructions
in the general-instructions-extension facility, which was added to the 7th edition of
z/Architecture. These instructions are also enabled by –march=z7 and above, and
can be disabled by –mno-general-instructions-extension.

The –mhigh-word-facility and –mno-high-word-facility options (en-
able/disable use of high-word facility instructions)

The –mhigh-word-facility option tells DCXX it can use the instructions in the
high-word facility, which was added to the 9th edition of z/Architecture. These
instructions are also enabled by –march=z9 and above, and can be disabled by
–mno-mhigh-word-facility.

Systems/C++ 77



The –mhfp-extensions and –mno-hfp-extensions options (enable/disable
use of HFP extensions facility instructions)

The –mhfp-extensions option tells DCC it can use the instructions in the HFP ex-
tensions facility, which was added to ESA/390. These instructions are also enabled
by any z/Architecture setting, and can be disabled by –mno-hfp-extensions.

The –finline[=x[:y:z]] and –fnoinline options (Control inlining opti-
mization)

DCXX features an inliner which can optimize the output code by expanding a
function “inline” at its call point. Inlining operates by replacing a call to a function
with the operations contained in the function itself. For small functions this can
decrease the execution time required by eliminating the function call linkage code.
It can also allow optimizations to be performed inside of the inlined function that
are aware of the context from which it was called. Inlined functions can actually
generate significantly larger code, though, as more than one copy of a function may
be generated for all the contexts it is called from.

The –finline[=x[:y:z]] option enables inlining. The value x specifies the inlining
mode. The value y specifies a maximum size (approximately number of opcodes)
for a function to be a candidate for inlining. The value z specifies a maximum
stack size for a function to be a candidate for inlining. In mode 0, the inliner is
disabled. In mode 1, all functions that are marked inline (with the inline keyword,
or are defined inline to a class definition) and are smaller than y:z are candidates
for inlining. In mode 2, all functions that are smaller than y:z are candidates for
inlining (whether they are explicitly marked or not). For values of x greater than
2, extra passes of the inliner are performed, essentially providing greater inlining
depth, but this is not recommended.

The inliner now proceeds in a different way than in past versions. It starts with the
smallest function and inlines all candidate calls from that function. It then proceeds
to larger functions, up until it reaches functions that are larger than y:z. It then
starts over at the smallest function and continues to repeat this process until either
all candidate calls from small functions are inlined, or until there are no more small
functions left (because they have all been made big). In this way, anything which
is advantageous to inline (i.e., a call to a small function from a small function) will
be inlined regardless of its depth in the call tree. Then once it is done with small
functions, the inliner performs a global pass (or several passes, in the case where x
is greater than 2) where it visits every single function call and inlines it if the called
function is a candidate for inlining.

The default behavior is now -finline=1:128:256, which means to inline any func-
tion which is marked inline and is smaller than approximately 128 opcodes long and
uses less than 256 bytes of stack space.

78 Systems/C++



The –O[n] option (Set optimization level)

The –O[n] sets the optimization level. The default setting is to do a minimal level
of optimization and inlining, with the intent to produce acceptable code while still
having fast compiles. –O0 disables even these basic optimizations. –O1 enables a
slightly larger set of optimizations, including block-local versions of common subex-
pression elimination, constant propagation, and dead code elimination. –O without
an explicit level indicator is the same as –O2, and adds more aggressive inlining as
well as global versions of common subexpression elimination and constant propaga-
tion. The highest setting, –O3, enables even more inlining, permits an unlimited
number of passes of all of the optimizations, and causes instruction scheduling to
reduce latency even at the expense of generating more instructions. For large com-
pilation units, –O3 could potentially cause the compiler to take a very long time to
execute.

Note that the –g option (enable debugging information) disables certain optimiza-
tions, especially inlining. To override this default (to reenable optimizations), make
sure that –O occurs after –g on the commandline. Also, –finline may be specified
after –O to override the inliner settings, as some code bases perform best with a
specific inliner configuration.

The –fasmcomm=mode option (control the comments in the assem-
bly output)

The –fasmcomm=mode option controls the output of comments in the assembly
source which represent lines from the C source code. mode can be one of none,
source, expanded, or both. If it is none then no comments are generated for C
source lines. If mode is source then comments are generated which reflect the
unprocessed C source code, prefixed with “---”. When expanded is specified com-
ments are generated which reflect the preprocessed (macro expanded) source lines,
prefixed with “***”. If both is specified then the unprocessed C source lines are
present prefixed with “---” and the processed source (when it is different) is present
prefixed with “+++”.

The default is -fasmcomm=expanded.

The –asmlnno option (Include line numbers in C source comments
in generated assembly)

The –fasmlnno option causes the compiler to include line numbers in the C source
comments in the generated assembly.

The default is –fno asmlnno.

Systems/C++ 79



The –fmin lm reg=val option (Set the minimum number of registers
in one LM instruction)

The –fmin lm reg=val option determines the minimum number of consecutive load
instructions which will be collected into a single LM or LMG instruction by the com-
piler’s peephole optimizer. The default value is 2.

The –fmin stm reg=val option (Set the minimum number of regis-
ters in one STM instruction)

The –fmin stm reg=val option determines the minimum number of consecutive store
instructions which will be collected into a single STM or STMG instruction by the
compiler’s peephole optimizer. The default value is 2.

The –fflex option (Enable FLEX/ES-specific optimizations)

The –fflex option tells the compiler it is targetting a FLEX/ES platform and should
make the appropriate optimizations. Currently this option has the same effect as
-fmin lm reg=4 -fmin stm reg=8.

The –frsa[=size] option (Specify the amount of space the compiler
reserves for the Register Save Area)

The –frsa=size option causes the compiler to reserve the specified size bytes at the
beginning of each per-function local stack area as the “Register Save Area” size.

This option is useful when using custom prologue/epilogue macros that may want to
apply different techniques for saving/restoring the register values at function entry
and exit.

In Systems/C mode (–flinux and –fc370 not specified), the compiler reserves 80
bytes of space for 31-bit programs and when –mlp64 option is enabled (in 64-bit
mode), the compiler reserves 168 bytes. This space is used by the default DCCPRLG
and DCCEPIL macros to save and restore register values.

The –rsa=size option can specify any positive value for the register-save-area size,
including zero. If it is specified as some value other than the default, then the default
DCCPRLG and DCCEPIL macros should not be used.

The size parameter is automatically adjusted to a multiple of 8 bytes, to enforce C
memory allocation requirements.

This option should not be used in conjunction with the –fc370 or –flinux options, as
the register save area in those situations is architected by the runtime environment.

80 Systems/C++



The –fpack=val option (Specify a default maximum structure align-
ment)

The –fpack=val provides a default maximum structure alignment. Specifying this
parameter is functionally equivalent to specifying pragma pack(val).

The –fpic option (Generate position independent code, small GOT)

When –flinux or –fztpf options are specified, the –fpic option can be used to cause
the compiler to generate position independent code. The resulting object can then
become part of a Linux or z/TPF shared library. The –fpic option causes the
compiler to generate code assuming a small Global Offset Table (GOT), where it
uses 12 bits of displacement to index into the table. If the GOT grows too large at
link time, then the –fPIC option can be used to indicate that the generated code
should assume a large GOT.

When building for use with the Systems/C runtime, –fpic causes the creation of
code suitable for linking into a shared library. It also enables –frent and –ffpremote,
so that each library can have its own PRV. External symbols will be encoded to
use an extra level of indirection. A reference to external symbol “foo” generates a
Q-con named “&foo”, which will be filled in by the dynamic linker with the address
of the variable, whereever it is resolved from. Likewise, a definition of the symbol
causes a definition of the “&foo” Q-con as well. Special reentrant initializer scripts
are emitted so that PLINK and the runtime know what to do with these indirect
symbols.

The –fPIC option (Generate position independent code for Linux &
z/TPF, large GOT)

When –flinux or –fztpf options are specified, the –fPIC option can be used to cause
the compiler to generate position independent code.

The resulting object can then become part of a Linux or z/TPF shared library.

The –fPIC option causes the compiler to use complete displacements into the Global
Offset Table (GOT), allowing for the largest program to be built as a shared library.

The –ffpremote/–ffplocal options (function pointers are remote/local)

By default, function pointers are local. If –ffpremote is specified, then they will be
remote. A remote function pointer contains the PRV to be used for the function,
and it is often needed for shared library situations (where more than one PRV may
be in play at a time). See the section on remote function pointers on page 132 for
more details.

Systems/C++ 81



The –fxplink option (Use eXtra Performance Linkage)

The –fxplink option instructs the compiler to use IBM’s eXtra Performance Link-
age (XPLINK). The compiler generates appropriate re-entrant DLL references to
XPLINK variables and code. It also uses the optimized XPLINK function calling
conventions.

Note that –fxplink is only effective when –fc370 is also applied. The –fxplink option
does imply –frent.

The –fc370 extended option (Enable C/370 LANGLVL(EXTENDED)
compatibility mode)

The –fc370 extended option causes DCXX to generate objects compatible with
IBM’s C++ compiler run with the LANGLVL(EXTENDED) option. For now this only
has an effect when –fxplink is specified. It enables Run-Time Type Information.

The –fuser sys hdrmap option (Use user $$HDRMAP for system #includes)

When a #include directive is processed, the file name may be altered depending
on rules in $$HDRMAP files. The system $$HDRMAP files are found as if a #include
<$$HDRMAP> was processed, and the user ones are found as if #include "$$HDRMAP"
was used instead. When –fuser sys hdrmap is specified, DCXX searches for sys-
tem headers using the rules from both the user and system $$HDRMAP files. When
–fnouser sys hdrmap is specified, searches for system headers use only the rules from
the system $$HDRMAP files. In either case, searches for user headers use just the user
$$HDRMAP rules.

–fuser sys hdrmap is the default.

The –fevents=filename option (Emit an IBM-compatible events list-
ing)

The –fevents=filename option causes DCXX to generate an event listing in the
named file. Several IBM products use event listings of this format to communicate
error message information between compilers and user interfaces. Using this option,
you may generate an events file for use with any products that share this format.

The events file contains 3 types of single-line records:

ERROR 0 A 0 0 B C 0 0 DCXD E F G H

A The number of the file where the error occurred.

82 Systems/C++



B The line number at which the error occurred.

C The column number at which the error occurred.

D The error code.

E A severity, one of I for information, W for warnings, E for errors, or U for
unrecoverable errors.

F The mainframe return code for the error.

G The length of the error message.

H The error message.

FILEID 0 A B C D

A The number of the file that is beginning.

B The line number of the #include that caused this file to be listed.

C The length of the file name.

D The file name for the file that is beginning.

FILEEND 0 A B

A The number of the file that is ending.

B The number of lines processed in that file.

The –fnamemangling=mode option (Select the name mangling mode
to use for IBM compatibility)

The –fnamemangling=mode option can be used to select one of two modes:

ansi ANSI mangling mode is the default when –fc370 is not specified and causes
DCXX to use a name-mangling that is consistent with the ANSI standard.

compat The default when –fc370 is specified. Instructs the compiler to generate
mangled symbol names compatible with IBM’s compiler. In specific, this
causes type qualifiers like const to be represented in parameter type encod-
ings, even though the ANSI standard does not allow overleading a function
differing only by type qualifiers.

Systems/C++ 83



The –fenum=val option (Specify default enumeration size)

The –fenum=val specifies the default enumeration size when compiling in IBM com-
patibilty mode (when the –fc370 option is enabled.)

Specifying this parameter is functionally equivalent to specifying pragma enum(val).

The value val can be specified as SMALL, INT, 1, 2 or 4.

The –fenum=val is only useful when the –fc370 option is enabled.

The –ftest[=name] option (Enable a separate test csect)

The –ftest option enables the creation of a separate CSECT for test (debugging)
data. It only has an effect when combined with the –fc370 and –g options (LE370
ISD debugging). The name of the section must be specified either as an argument
to –ftest or with a #pragma csect(test, "name") statement. Most ISD-related
debugging information is put in the test CSECT.

The –fprolkey=key option (Append a global prologue key)

The –fprolkey=key option causes DCXX to append key to all DCCPRLG invocations,
as if it had been specified on each function using #pragma prolkey. If #pragma
prolkey and –fprolkey are both specified, they are concatenated.

The –fcommon and –fnocommon options (Enable/disable common
linkage for uninitialized globals)

In Linux/390, z/Linux, and z/TPF modes (the –flinux or –fztpf options are specified,
all defined global data is by default placed in .data, which is the behavior when
–fnocommon is specified. However, if –fcommon is specified then any uninitialized
global data is placed in .bss instead. Definitions in .bss take up less space in the
object files and, more importantly, do not generate linker messages for duplicate
definitions.

The –fsave dsa over call/–fno save dsa over call options (Control if
DSA bytes are saved and restored over alternate linkage call)

The –fsave dsa over call option indictes that, for Systems/C mode, the save-chain
area of the DSA should be saved and restored across linkage-OS and linkage-ASM
function calls. These areas are used in the Dignus runtime and can be overwritten
by linkage-OS and linkage-ASM functions.

84 Systems/C++



By default the linkage areas are saved and restored across calls to these alternative
linkage functions.

This option is only meaningful for Systems/C mode, and not applied when the
–flinux or –fc370 options are specified.

The –fdfe and –fnodfe options (Enable/disable dead function elimi-
nation.)

Normally the compiler does not generate code for unreferenced static functions or
class members. If the function is declared static but not invoked, or referenced via
its address, then it cannot be reached and thus does not need to be present in the
resulting code.

This optimization is called “dead function elimination”.

The –fnodfe option defeats dead function elimination, so that those functions will
appear in the generated code.

The default if –fdfe. If the –g option is enabled, requesting debuggable code, then
–fnodef will be enabled in case the user wishes to reference such functions during a
debug sessions. –fdfe can be used to re-enable it.

Keeping unreferenced functions in the generated code can dramatically increase the
size of resulting objects and programs.

The –fmapat and –fnomapat options (Enable/disable mapping ’@’
to ’ ’ in external symbol names)

If –fmapat is specified then any at signs (’@’) in #pragma map directives will be
replaced with underscores (’ ’). This option is especially useful in Linux or z/TPF
modes where at signs are not valid in symbol names.

The –fat option (Support @-operator in expressions)

The @ operator is an extension provided by DCXX to assist in passing arguments
by-reference to assembly language functions.

The @ operator is similar to the & operator in standard C, in that it produces the
address of the following expression, but can be used on rvalue expressions as well as
lvalue expressions.

See the section on the @ operator on page 113 for more information about the use
of @.

The default is –fnoat.

Systems/C++ 85



The –fctrlz is eof and –fno ctrlz is eof options (Enable/disable treat-
ing control-Z as an EOF character)

On Windows hosts, the character associated with control-Z (0x1A) has traditionally
(since DOS) been used to indicate the end of file. So on Windows hosts we default
to –fctrlz is eof so that any files with a control-Z in them will be terminated at
that point. Contents of the file after the control-Z will then be ignored. On all
non-Windows hosts the default is –fno ctrlz is eof, meaning that control-Z will be
treated like any other character in the source code. Note that the C language assigns
no meaning to control-Z so if it occurs outside of a comment it may still generate a
language-level error message.

The –fpermissive friend and –fno permissive friend options (Enable/disable
friend declarations on private members)

According to the ISO C++ standard, friend declarations may only refer to acces-
sible members of other classes. However, older compilers would commonly permit
friend declarations to refer to private members of other classes. The default is the
modern behavior, –fno permissive friend. For compatibility with the older behavior,
use the –fpermissive friend option.

The –ffnio/–fno fnio options (enable/disable function names in ob-
jects for debugging)

Often it is necessary to be able to determine which function you are looking at
when reading a memory dump. Some linkages (such as the DCCPRLG macro) provide
this information by default, and others provide it via indirect pointers to debug
information. But if neither of those options is convenient, use –ffnio (function name
in object) to guarantee that a string containing the name of the function will be
present in memory just before the entry point of the function. The default behavior
is to not emit the string, corresponding to –fno fnio.

The –fhide skipped/–fshow skipped options (enable/disable omis-
sion of preprocessor-skipped lines in listing)

The preprocessor will skip certain source lines, due to constructs like #if 0. By
default (–fshow skipped), these skipped lines will be output in the compiler listing.
However, if –fhide skipped is specified then they will be omitted from the listing. In
some situations this can make a much more readable –flisting output. These options
only affect the informational listing, and not the generated code.

86 Systems/C++



The –fsigned bitfields and –funsigned bitfields options (set default
signedness of bitfields with bare types)

If a bitfield declaration does not specify an explicit signed or unsigned keyword
and –fsigned bitfields is specified then the compiler will use the signedness inherent
in the type. For example int is a signed type, so int x:1 will define a 1-bit signed
bitfield.

However, if –funsigned bitfields is specified then DCXX will use an unsigned type
for bitfields unless the signed keyword is explicitly specified in the declaration.

If –fztpf or –flinux is specified then –fsigned bitfields is the default, for compatibil-
ity with gcc. Otherwise, –funsigned bitfields is the default, as is typical for other
mainframe compilers.

The –v option (print version information)

The –v option causes DCXX to print the version information on the STDERR
stream and exit with a return code of 0.

The –fsched inst, –fsched inst2 and –fno sched inst options (control
the behavior of the instruction scheduler)

DCXX has an instruction scheduler which will attempt to reorganize the instruction
sequence so that any instruction which reads a value in a register is separated
from the instruction which initializes that register. On modern architectures such
as z/Series, this can cause a substantial performance improvement by minimizing
pipeline stalls. The reordered code can be hard to debug, because the point where
one expression ends and another begins is effectively blurred.

By default the compiler uses the setting of –fsched inst, meaning a single pass of
scheduling is completed just before the compiler is done. In this case, the exact same
instructions are generated as without scheduling, but their order may be changed.

The –fno sched inst option disables instruction scheduling, to produce more readable
code. It is the default if –g is specified.

The –fsched inst2 option causes the compiler to perform an additional pass of
scheduling before register allocation and peephole optimization. This way, schedul-
ing can have a more substantial impact on the generated code. It has the general
effect of making register contention higher, as each register is in use over a longer
span of time. Thus it may result in slightly larger code with more spilled registers.
Because of the high cost of a pipeline stall, it is often faster even so. If you specify
–O3 then that will imply –fsched inst2.

Systems/C++ 87



The –fxref and –fno xref options (enable/disable cross-reference list-
ing

If –fxref is specified, then the DCXX listing will contain an extra section with cross
reference information, indicating where each symbol is read or modified.

The –frestrict and –fno restrict options (enable/disable C99-style
restrict keyword)

If –frestrict is specified, then the C99-style restrict keyword will be supported.
By default, restrict is not supported, as it is not part of standard C++. If –fc370
is specified (compatibility with IBM’s Language Environment), then restrict is
enabled automatically.

The –fcpp98 option (specify only C++98 will be accepted)

By default, DCXX accepts source code that complies with the ISO/IEC 14882:2011
standard, known as C++11. If –fcpp98 is specified, then DCXX will require the
source code to comply with the earlier ISO/IEC 14882:1998 standard, known as
C++98.

The –fcpp11 option (enable support for C++11 language features)

The –fcpp11 option is the default behavior for DCXX, indicating that code con-
forming to the ISO/IEC 14882:2011 standard will be accepted.

To use –fcpp11 when compiling code that was developed for C++03, it may be
necessary to also specify –fno parse templates to restore the C++98 default of not
parsing generic template code until it is being instantiated. It may also be necessary
to specify –fno implicit noexcept because the implicit noexcept specifier present on
some destructors will often cause incompatibilities in inherited virtual functions.

See the chapter “C++ Language Features” on page 12 for more details.

The –fcpp14 option (enable support for C++14 language features)

If –fcpp14 is specified, DCXX will accept code using the new features found in the
ISO/IEC 14882:2014 standard. See the chapter “C++ Language Features” on page
14 for more details.

88 Systems/C++



The –fcpp17 option (enable support for C++17 language features)

If –fcpp17 is specified, DCXX will accept code using the new features found in the
ISO/IEC 14882:2017 standard. See the chapter “C++ Language Features” on page
15 for more details.

The –funrestricted unions and –fno unrestricted unions options (En-
able/disable the C++11 unrestricted unions feature)

Unrestricted unions are a C++11 feature that allows you to specify classes that
require construction or destruction as members of a union. Construction using
placement new must then be manually paired with the correct explicit destructor
calls. The –funrestricted unions option can be used to enable unrestricted unions
even in –fcpp98 mode.

The –fimplicit noexcept and –fno implicit noexcept options (Enable/disable
the implicit C++11 exception specifications)

The noexcept function specifier is a new C++11 that allows the programmer to tell
the compiler that it may issue a non-recoverable call to std::terminate() if any
exceptions are thrown. The C++11 standard says that noexcept will be assumed on
certain destructors and deallocators. This can cause trouble for C++98-conforming
code, because compatibility between noexcept specifiers is necessary in inherited
virtual functions. If –fcpp11 or –fimplicit noexcept is specified, then the implicit
noexcept specifiers will be applied. However, if –fno implicit noexcept is specified,
then code containing C++98-conforming virtual destructors will compile cleanly
even in C++11 mode.

The –fstatic anon names and –fno static anon names options (En-
able/disable forcing members of the unnamed namespace to static)

By default, members of the unnamed namespace can be externally-visible symbols
with unique compiler-generated names. But it is equally valid to treat them as
static, because nothing in another compilation unit could need to reference them.
–fstatic anon names causes the compiler to treat all of them as static local-only
definitions. –fno static anon names is the default.

The –fsource enc=utf8 and –fsource enc=ascii options (Select source
character encoding)

The –fsource enc=utf8 option causes DCXX to treat the source input files as UTF-
8. Multi-byte characters will be decoded to the appropriate unicode code point. This

Systems/C++ 89



allows unicode to be used in string literals such as u’...’ and u"...". The default
is –fsource enc=ascii, which treats each byte as a single code point.

These options are only available on ASCII hosts. EBCDIC hosts always use an 8-bit
character encoding.

The –fdwarf extern and –fno dwarf extern options (enable/disable
generation of DWARF data for extern variables)

The –fdwarf extern option enables the generation of full DWARF location info for
extern variables. The default (–fno dwarf extern) is to only generate location info
for locally-defined variables. Note that non-referenced variables will still not have
any debug information generated for them.

90 Systems/C++



Assembling the output

Using HLASM

For traditional mainframe operating systems (MVS, z/OS, etc...) DCXX generates
HLASM-style assembly code which is assembled with the Dignus DASM program.

For Linux, z/Linux and z/TPF, the compiler generates output in the GNU GAS
style, and the GAS assembler is used. For information about how to use GAS to
create object files, see the chapter “Compiling for Linux/390, z/Linux and z/TPF”
(page 161).

This section describes the programs for building programs for traditional mainframe
operating systems.

DCXX generates assembler source that generally requires the use of the Dignus as-
sembler, Systems/ASM, V1.50 or later. The generated assembler source may contain
features and extensions which are not recognized by the IBM HLASM assembler.
Using HLASM to assemble DCXX-generated source is not supported.

Using Systems/ASM

The Systems/ASM assembler, DASM version 1.50 or later, can be used on cross-
platform hosts or natively on OS/390, z/OS and z/VM. The Systems/ASM assem-
bler will generate either OMF, Extended C/370 or GOFF object files. Extended
C/370 object files use XSD cards instead of ESD cards allowing for external identi-
fiers longer than 8 characters.

DCXX generates assembler source that contains some extensions supported by
DASM that support the advanced linking features required to implement the C++
language.

When assembling source generated by DCXX, the DASM –fdupalias option should
be used.

The IBM pre-linker and binder examine the IDR information on END cards to
determine the version of the C compiler which generated the object. The section
on IBM C++ compatibility in this document describes those requirements in more
detail. The compiler-generated code will properly set the IDR value.

A typical DASM command line on a cross-platform UNIX host is shown below.
This would be similar for Windows.

dasm -Lc:/dignus/maclib -macext . -fdupalias -o my.obj myfile

Systems/C++ 91



Note that the DASM command specifies where to search for the dignus macros via
the —L option.

For more information, consult the Systems/ASM documentation.

92 Systems/C++



Linking Assembled Objects

For traditional operating system targets, the assembled object decks can be linked
into an executable load module.

Once the compiler-generated assembly source has been assembled, the disparate
objects can be linked into an executable load module. If the Systems/ASM assem-
bler was used to cross-assemble the assembly source, the object decks should be
transferred to OS/390 via FTP or some other binary-mode transfer mechanism.

Systems/C contains two versions of the C libraries — the RENT version for gen-
erating re-entrant programs and the non-rent version for generating non-re-entrant
programs. The Systems/C++ C++ library is currently only available in RENT
form, so the –frent option (default) should be used with the RENT libraries.

Systems/C++ programs require the use of the Systems/C++ pre-linker, PLINK.

A note on re-entrant (RENT) programs

Re-entrant (RENT) programs are programs which can safely be linked with the
RENT option applied to the IBM LINKER, and can be placed in the OS/390
LINKLST, etc. They are, generally speaking, programs which do not modify their
own loaded sections, but instead allocate memory to contain program variables at
program start-up.

All C++ source is compiled in “RENT” mode, thus the compiler will place all of
the extern and static variables in the pseudo-register vector, the PRV. These
variables are referred to by Q-CON references in the generated assembly source.

By default, the Systems/C pre-linker PLINK gathers all of the DXD definitions
together allocating an entry for each in the PRV, and adjusts the Q-CON references
accordingly. Alternatively, this step can be deferred, allowing the IBM or PLINK
binding steps.

At start-up, the Systems/C library allocates the appropriate space for the PRV,
and retains a pointer to the PRV at a known location. (Note that for z/Architecture
programs, this allocated space may be above the 2-gigabyte “bar”.)

At run-time, a reference to a variable in the PRV uses the PRV pointer and the
value the linker has substituted for the Q-CON, adding them together to produce the
run-time offset for the variable.

An issue arises because of variable initialization allowed by the ANSI C standard.
For example, the address of a variable in the PRV isn’t known until run-time, when
the PRV is allocated, but is a valid file-scoped initialization value.

Because of this, the Systems/C++ compiler, DCXX, and the Systems/C compiler,
DCC, produce run-time initialization scripts which the Systems/C library processes

Systems/C++ 93



at program start up, after the PRV has been allocated. It is the job of the pre-
linker, PLINK, to locate the start of these scripts in each object and gather them
together. PLINK then places a list of these at the end of the resulting object, in a
known section. The run-time library walks the list, interpreting the scripts it finds.

Thus, RENT programs must be processed with the Systems/C and Systems/C++
pre-linker, PLINK, to ensure proper run-time initialization of variables located in
the PRV.

Using PLINK

PLINK gathers the input objects together, performing AUTOCALL resolution
where appropriate, handling PRV allocations and references, and produces a single
file which can then be processed by the IBM BINDER or older IEWL linker. Al-
ternatively, PLINK can also directly produce the load module, avoiding the IBM
BINDER step.

As PLINK gathers objects, it examines the defined symbols, looking for a Sys-
tems/C++ initialization script section and other object file processing that may
need to be performed.

For detailed information on PLINK, see the PLINK section in the Systems/C
Utilities manual.

On cross-hosted platforms (Windows and UNIX), PLINK is typically executed
with the object files listed on the command line; and a –S option or DAR archive
names to locate any required library objects.

For example, on a Windows platform the command:

plink prog.obj C:\sysc\lib\libstdcxx_mvs.a C:\sysc\lib\libcxx_mvs.a
"-SC:\sysc\lib\objs_rent\&M"

will read prog.obj, using the libstdcxx mvs.a and libcxx mvs.a DAR archives
and then the C:\sysc\lib\objs rent directory for any AUTOCALL references.
Because no –o option was specified, the resulting object file is written to the file
p.out.

This command, on UNIX platforms:

plink t1.obj t2.obj libone.a -L/usr/local/sysc -lstdcxx_mvs -lcxx_mvs

will read the two primary input objects t1.obj and t2.obj. It will try and re-
solve references from the DAR archive libone.a, then the two DAR archives
/usr/local/sysc/libstdcxx mvs.a and /usr/local/sysc/libcxx mvs.a.

94 Systems/C++



On OS/390 and z/OS, under TSO or batch JCL, PLINK operates similar to the
IBM pre-linker. The resulting gathered object is written to the file //DDN:SYSLMOD
unless otherwise specified. PLINK has a default library template of -S//DDN:SYSLIB(&M)
which causes it to look in the SYSLIB PDS for autocall references. Other input ob-
jects, -S library templates or DAR archives may be added in the PARMS option on
the PLINK step. PLINK reads the file //DDN:SYSIN as the initial input file. Typi-
cally, this file contains INCLUDE cards to include the primary objects for the program.
Other primary input files may be included in the PARMS for PLINK. For exam-
ple, the following JCL reads the object INDD(PROG) and uses DIGNUS.LIBSTDCX,
DIGNUS.LIBCXX and DIGNUS.LIBCR.OBJ as the autocall libraries:

//PLINK EXEC PGM=PLINK
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBSTDCX,DISP=SHR
// DD DSN=DIGNUS.LIBCXX,DISP=SHR
// DD DSN=DIGNUS.LIBCR,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

Note that the STDERR and STDOUT DDs were specified for PLINK’s message output.
Also, the ARLIBRARY control card could have been used to add additional DAR
archive files for resolving external references.

Systems/C++ programs can also be pre-linked and linked for the OpenEdition shell.
Under the OpenEdition shell, PLINK operates as it would under any other UNIX
platform. After pre-linking, the final link can be accomplished using the

cc -e // -oprogram plinked-file

command. Where program is the resulting load-module and plinked-file is the pre-
vious PLINK output.

For more detailed information regarding PLINK and the other Systems/C utilities,
see the Systems/C Utilities manual. Also, the Systems/C C Library manual contains
more information on linking with the Systems/C C library and the OpenEdition
runtime environment.

Other useful utilities

Systems/C++ provides other useful utilities. More details and examples of their
use can be found in the Systems/C Utilities manual.

Systems/C++ 95



DAR — the Systems/C Archive utility

The Systems/C archive utility, DAR, creates and maintains groups of files combined
into an archive. Once an archive has been created, new files can be added and
existing files can be extracted, deleted or replaced. Files gathered together with
DAR can be used to resolve AUTOCALLed references from PLINK.

DRANLIB — the Systems/C Archive index utility

DRANLIB is used to index a Systems/C archive to allow for AUTOCALL refer-
ences to longer names, or to names which are not dependent on the archive member
name. DRANLIB will create a SYMDEF member in the Systems/C archive which
PLINK will consult when looking for symbolic resolutions.

DPDSLIB — the Systems/C PDS library utility

DPDSLIB is used to index a PDS library on OS/390 or z/OS to allow for AU-
TOCALL references to longer names, or to names which are not dependent on the
PDS member names. DPDSLIB will create a ##SYMDEF member in the PDS which
PLINK will consult when looking for symbolic references.

The Systems/C++ C++ library PDSs on z/OS and OS/390 have been processed
with the DPDSLIB utility, to allow PLINK to AUTOCALL the longer C++ names
present in the C++ library.

GOFF2XSD — convert GOFF format objects to XSD format

GOFF2XSD is used to convert GOFF format objects to XSD format. GOFF
format objects are created by the IBM HLASM assembler when the XOBJECT option
is enabled or DASM when the -goff option is enabled.

DCCPC — Dignus CICS Command Processor

DCCPC takes as input C source code containing EXEC CICS commands and gen-
erates pure C source that interfaces with the CICS run-time.

Linking programs on z/OS and OS/390

Before execution, programs must be prepared using the Systems/C++ pre-linker,
PLINK, then the IBM BINDER.

96 Systems/C++



Systems/C provides two versions of the C library, one for RENT programs and
one for non-RENT programs. The Systems/C++ C++ library is currently only
available in RENT form. It is important to link with the appropriate version. If
any source programs reference variables found in the Systems/C++ or Systems/C
libraries (e.g., errno) and that program was compiled with the –frent option (the
default), then the re-entrant version of the C and C++ libraries should be used.

Using the incorrect version of the library will cause strange run-time errors. The
installation instructions for your particular host platform will detail where to find
the correct library. Normally the Systems/C++ and then the Systems/C library is
specified as the last library to use for AUTOCALL resolution in the PLINK step.
PLINK must be used for all C++ programs to properly support C++ language fea-
tures. Also PLINK can take advantage of DAR archive libraries and DPDSLIB
processed PDS libraries for external reference resolution.

In the following example JCL, there are three objects to link together to form the
resulting executable, MAIN, SUB1, and SUB2, representing a main module and two
supporting sub-modules. These are found in the PDS MY.PDS.OBJ. The resulting
executable is written to MY.PDS.LOAD(MYPROG).

Systems/C++ 97



//LINK JOB
//PLINK EXEC PGM=PLINK,REGION=2048K
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSLIB DD DSN= DIGNUS.LIBCXX,DISP=SHR
// DD DSN= DIGNUS.LIBSTDCX,DISP=SHR
// DD DSN= DIGNUS.LIBCR,DISP=SHR
//SYSMOD DD DSN=&&PLKDD,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//INDD DD DSN= MY.PDS.OBJ,DISP=SHR
//SYSIN DD *
INCLUDE INDD(MAIN)
INCLUDE INDD(SUB1)
INCLUDE INDD(SUB2)

//STDIN DD *
//LINK EXEC PGM=IEWL,REGION=2M,PARM=(’LIST’,
// ’MAP,XREF,LET’,
// ’ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES’)
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLIN DD DSN=*.PLINK.SYSMOD,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=MY.PDS.LOAD(MYPROG)

First, the Systems/C++ pre-linker, PLINK is invoked, specifying the inclusion of
the three object modules and the Systems/C++ and Systems/C reentrant libraries.
This step could have been performed on a cross-platform host, running PLINK
there. Then the IBM BINDER is invoked for final linking and generation of the
resulting load module.

98 Systems/C++



Running programs on z/OS and OS/390

Once a program has been successfully linked, it is a typical OS/390 or z/OS load
module and may be executed via JCL or the TSO CALL command as any other
load module.

The Systems/C++ and Systems/C libraries contain no modules that are loaded dur-
ing program execution, meaning it is “all-resident.” As such, there are no run-time
library concerns, and no particular modules which must be present in a STEPLIB
DD.

The I/O portion of the Systems/C C library reserves file descriptors #0, #1 and
#2 for association with //DDN:STDIN, //DDN:STDOUT and //DDN:STDERR. Thus, the
DD-names STDIN, STDOUT and STDERR must be properly allocated. The Systems/C
C Library manual contains more information regarding file descriptors and I/O.

For more information about the Systems/C++ run-time environment, consult the
Systems/C C Library manual.

Systems/C++ 99



100 Systems/C++



DCXX Advanced Features and
C++ Extensions

The Systems/C++ compiler, DCXX, provides many advanced features. These
features combine to produce a programming environment which is perfectly suited
for many systems programming tasks.

Predefined macros

The following predefined macros are defined by the Systems/C++ compiler.

BFP BFP is defined to 1 if the –fieee option was specified. This
indicates that IEEE floating point values will be generated by
default.

COUNTER COUNTER is initially defined to 0 and incremented each time
it is referenced. COUNTER can be useful to create unique
variable names, or within inline assembly language macros.

CHAR UNSIGNED CHAR UNSIGNED is defined to 1 if the char data type is un-
signed by default. This is the typical mode of compilation.

SYSC SYSC is always defined to the value 1, indicating the source
is being compiled with the Systems/C compiler.

I390 I390 is always defined to the value 1.

SYSC VER SYSC VER is defined to a string containing the Systems/C
compiler version number.

SYSC ASCIIOUT SYSC ASCIIOUT is defined to 1 if the –fasciiout option was
enabled. This indicates that character and string constants will
be generated as ASCII values.

SYSC ANSI BITFIELD PACKING SYSC ANSI BITFIELD PACKING is defined to 1
if the –fansi bitfield packing option was specified.

Systems/C++ 101



SYSC LP64 SYSC LP64 is defined to the value 1 if the –mlp64 option is
enabled. This indicates that pointers and the long data type
are 64-bits wide.

LP64 LP64 is defined to the value 1 when the –mlp64 option is en-
abled. This indicates that pointers and the long data type are
64-bits wide.

SYSC ILP32 SYSC IPL32 is defined to the value 1 when the –milp32 option
is not enabled. This indicates that pointers and the types, int
and long are 32-bits wide.

ILP32 IPL32 is defined to the value 1 when the –milp32 option is not
enabled. This indicates that pointers and the types, int and
long are 32-bits wide.

ptr31 ptr31 is defined to be ptr32 which is recognized as equiv-
alent to the Systems/C ptr31 keyword.

PTR31 PTR31 is defined to the value 1, indicating this compiler rec-
ognizes the ptr31 and ptr64 keywords.

PTR32 PTR32 is defined whenever PTR31 is defined.

attribute

DCXX supports the attribute extension found in the g++ compiler, but only
for –flinux or –fztpf. This extension is used to provide attributes on declarations
outside of the scope of the C standard. Attribute-clauses may be placed at the
end of structure/union definitions, within structure member lists, after variable
declarations and within function declarations, or anywhere a type qualifier/specifier
can be used.

An attribute-clause has the form:

__attribute__((value))

notice that two parenthesis are required.

Unrecognized attribute clauses are silently ignored.

constructor/destructor attributes

attribute ((constructor)) applies to function definitions, and indicates that
the given function is a constructor-type function and should be executed when C++
constructors are executed, prior to the invocation of the main function.

102 Systems/C++



attribute ((destructor)) applies to function definitions, and indicates that
the given function is a destructor-type function and should be executed when C++
destructors are executed, after the main function has returned or exit has been
called.

For example, the following source declares two functions, construct and destruct,
which will be executed along with C++ constructors and destructors appropriately:

void __attribute__((__constructor__)) construct(void)
{

printf("I am executed along with C++ constructors\n");
}

void __attribute__((__destructor__)) destruct(void)
{

printf("I am executed along with C++ destructors\n");
}

packed attribute

attribute ((packed)) applies to struct and/or union definitions. If
attribute ((packed)) appears after the structure or union definition, it indi-

cates that the elements within the structure should be allocated without regard for
their alignment requirements. Thus, the elements in the structure are “packed”
together without any alignment bytes. Consider, for example, this structure

struct unpacked {
char c;
int i;

};

The sizeof operator applied to struct unpacked would result in a value of 8,
because the alignment of int data requires that it be allocated on a 4-byte boundary.
Thus, there are 3 extra bytes of padding between the fields ‘c’ and ‘i’.

However, if the attribute ((packed)) attribute is applied, as in this example:

struct packed {
char c;
int i;

} __attribute__((packed));

then sizeof applied to struct packed would result in a value of 5, 1 byte for
the field ‘c’ and 4 bytes for the field ‘i’. The fields in the structure are allocated
without regard for their alignment requirements, and are “packed” together as close
as possible.

Systems/C++ 103



mode attribute

attribute ((mode(value)) can apply to any numeric or pointer type, and serves
to force a specific size on a type, irrelevant of the underlying type. Supported modes:

Mode Bits
byte 8
word 32 or 64 depending on pointer mode

pointer 32 or 64 depending on pointer mode
QI 8
HI 16
SI 32
DI 64

The IBM-provided headers for z/TPF use modes SI and DI as alternatives to the
ptr31 and ptr64 keywords to specify a pointer size. For example:

void *__attribute__((mode(SI))) voidptr32;
void *__attribute__((mode(DI))) voidptr64;

weak attribute

A symbol may be modified with attribute ((weak)) to indicate that it should
use weak linking. For a defined symbol, weak linking indicates that multiple defi-
nitions of the same symbol are to be silently ignored. For an undefined (extern)
symbol, weak linking indicates that there should be no linker error message if the
symbol has no definition. Function and variable symbols can both be weak. Weak
linking is very dependent upon the linker used. On some platforms, a missing weak
symbol can be detected by comparing the address of the symbol to 0. Example:

extern int __attribute__((weak)) weakvar;
int is_weak_defined(void) {

if (&weakvar == (int *)0) {
return 0; /* not defined */

} else {
return 1; /* is defined by another comp unit */

}
}

deprecated attribute

The attribute ((deprecated)) attribute can appear after a declaration of a
function, variable or typedef. Subsequent uses of the declared symbol will cause the
compiler to generate warning message #1293, indicating the symbol is deprecated.
If possible, the message will also contain the file name and line number of where the
symbol is declared so the user can refer to the declaration for more information.

104 Systems/C++



visibility attribute

ELF linkage attributes can be controlled with attribute ((visibility("mode"))).
The valid visibility modes are default, hidden, protected, and internal. Their
meaning is defined by the linker. Note that they only have an effect when –flinux
or –fztpf is in effect, as other platforms do not use ELF.

For shared libraries, it may be useful to have symbols default to hidden except
for a few which are explicitly exported. This can be accomplished by putting
–fvisibility=hidden on the command line and then marking individual definitions:

int this_is_hidden;
int __attribute__((visibility("default"))) not_hidden;

FUNCTION

DCXX supports a “predefined” identifier named FUNCTION . FUNCTION is
similar to the C pre-processor identifier LINE except that it is processed during
the compilation-phase instead of the preprocessing-phase.

During compilation, FUNCTION is replaced by a string constant that contains the
name of the current function.

If FUNCTION identifier occurs outside of function scope, it is replaced with the
empty string, "", and a warning is issued.

FUNCTION is different from the ANSI-defined func identifier. func is de-
fined to be a single instance within a function of locally declared array of characters
which is initialized to the string constant. Thus, every occurrence of func is
guaranteed to address the same array within the function. Since FUNCTION is
simply directly replaced with a string constant, each occurrence could potentially
address different versions of the string.

The rent and norent qualifiers

extern or static storage class variables my be qualified with either the rent
and norent keyword. This allows for fine control over the location of any specific
variables.

By default all extern and static variables will be placed in the Pseudo Register
Vector, the PRV, and could require a costly run-time initialization. If a variable is
const and the initialization is appropriate, the variable need not reside in the PRV
and the initialization can occur at compile time, saving run-time startup costs.

Systems/C++ 105



For example, the following declares an array of integers that are never written to,
and thus can be initialized at compile-time instead of run-time. Application of the
norent keyword will ensure this array is not allocated in the PRV:

__norent const int array[10] = { 1, 2, 3, 4, 5, 6 };

Note that if an element of the array is modified at run-time, the program will no
longer be re-entrant. Because of the const keyword; the compiler will emit a warning
message if it discovers a potential modification of the array.

Although the Systems/C++ runtime is “rent only,” the flexibility to define norent
data can improve runtime performance.

bit sizeof and bit offsetof operators

DCXX supports two operators to determine the bit size and offset of class or
structure members:

__bit_sizeof expr
__bit_offsetof(type, field)

They are meant to be used on bit fields, but work on regular fields as well. The
expr must be a class or structure member reference, either the . or -> operator.
The result of bit offsetof is measured from the beginning of the structure. The
result can be used in constant contexts, for example to define enum values or array
dimensions.

Example usage:

int bits = __bit_sizeof ((struct foo *)0)->field;
int offset = __bit_offsetof(struct foo, field);

Inline Assembly language support

DCXX supports the ANSI standard inline assembler source feature. This feature
may be used within a function, or in external file scope. It specifies assembly source
that will be copied, verbatim, to the generated assembly source deck. However,
this approach does not take advantage of the more advanced Systems/C++ inline
assembly language features.

106 Systems/C++



DCXX also supports the same robust inline assembly language feature as the Sys-
tems/C compiler, DCC. This feature may be used within a function or in external
file scope. It specifies assembly source that will be copied, verbatim, to the generated
assembly source deck.

In support of this feature, DCXX also provides register-based automatic variables:

A register-based variable is a variable of integral or pointer type, with the register()
keyword added to its type declaration. The register() keyword is treated as a
storage class qualifier by the compiler.

register(nn) — Type specifier.

Specifies that the datum is to be located specifically in register #nn.

References to the datum will use the specified register.

If this specifier occurs at file scope, the register is reserved for all functions which fol-
low. This causes the compiler to reserve the register and not use it for the remaining
functions. References to the declared datum will use the associated register.

The extern specifier may not be used on a register declaration.

In function scope, within the scope of the datum’s declaration, the register is not
available for use by the compiler. Care must be taken to not use registers normally
used by the compiler. These registers include registers 0, 1, 12, 13, 14 and 15, or
the registers specified in the –fframe base or –fcode base options. The compiler does
not examine the inlined assembly source for uses of these registers. The compiler
will issue a warning for declarations that use a register which is reserved across a
whole function (such as the code base and the frame base), but will not warn for
declarations using registers that are used for function calls.

For example, the following section of code declares a void * pointer which is asso-
ciated with register #5:

{
__register (5) void *r5;
r5 = 0; /* Put a 0 in register #5 */

}
/* r5 is now available for use again by the compiler. */

asm [n] ... — Inline assembly source

__asm [n]
{

Any text
}

Systems/C++ 107



The asm keyword, optionally followed by an integral constant, defines the be-
ginning of assembly language text which will be copied verbatim to the generated
assembly language source. This statement may appear within a function, or in file
scope. Note that the text must follow the ANSI C++ preprocessor tokenizing rules,
otherwise, there are no restrictions on what the text contains. The text may be any
number of lines. To use asm statements effectively in #define macros and other
instances involving the C++ preprocessor, the compiler searches the specified text
for escape sequences, and replaces them with certain characters. An escape sequence
begins with a single backslash character, “\”. The recognized sequences are:

Escape sequence Replacement
\c continuation
\n new-line
\p pound sign
\s space
\C section name
\q single-quote
\Q double-quote

Any character following the backslash which is not recognized is copied directly. So,
to produce the backslash character, one would use \\ in the assembly source.

\c and \C are special cases, in that the character isn’t directly replaced. \c causes
spaces to be added to the source line up to column 72, where a ‘*’ will be placed.
That is, \c is used to indicate this is an assembly continuation line. \C expands into
the current code section name for this compilation.

The optional integral constant declares how many bytes the inline assembly source
will generate. The compiler uses the value to determine if the code will fit into an
existing 4K code region, or if it should be moved to a subsequent region. If the value
isn’t specified, the compiler counts the number of source lines and multiplies that
by 4 to arrive at a reasonable heuristic. The value doesn’t need to be exact; but if
addressability problems become apparent during assembly of the generated source,
this value should be increased appropriately.

Combined with the register() keyword, asm provides a powerful mechanism
for generating direct assembly language code and interfacing with C++ variables.

For example, to invoke the GETMAIN macro to acquire main memory storage,
the following block of C++ code could be used:

{
void *getmain_result;
unsigned long size;

size = nnn; /* Size of the desired allocation */

108 Systems/C++



{
__register(1) unsigned long r1;
__register(2) unsigned long r2;

/* Need to declare R0 because GETMAIN uses it */
/* We don’t want the compiler to grab it */
__register(0) unsigned long r0;

r1 = 0xf0000000; /* Put X’F0000000’ in R1 */
r2 = size; /* Store desired size in R2 */
/* Call GETMAIN - the macro expands to ASM code */
/* that is 8 bytes long. */
__asm 8 {

GETMAIN RU,LV=(2),LOC=BELOW
}
/* Put the result of GETMAIN into the C variable */
/* ’getmain_result’ */
getmain_result = (void *)r1;

}
}

The following example demonstrates use of the escape sequences within a #define
macro. The macro defines a fast strcpy()-like macro which takes advantage of the
string instructions available on some processors. The escape sequences \s and \n are
required because the C++ preprocessor considers this one rather long source line.
Thus, \n is used to add new-lines where appropriate in the assembly language source.
Furthermore, the C++ preprocessor will remove unneeded white space (blanks or
tabs) per the C++ syntax rules. Thus, \s is used to ensure that each line begins
with a blank. If \s isn’t used, the assembler would consider the instruction opcodes
to be labels, which is not the intent.

#define fast_strcpy(dest, src) { \
__register(0) r0; \
__register(2) void *r2 = dest; \
__register(3) void *r3 = src; \
__asm 12 { \

\s SR 0,0 \n\
\s MVST 2,3 \n\
\s BO *-4 \n\

} }

asm(“...”:output:input:clobber) — GCC-style inline assembly source

As of version 2.00, DCXX supports GCC-style inline assembly. If the asm keyword
is followed by a parenthesis, then DCXX recognizes the GCC-style syntax instead.

Systems/C++ 109



__asm("asm code",
: output operands
: input operands
: clobber list);

The comma-separated operand and clobber lists are optional.

In the asm code, the same backslash (“\”) escape codes are honored as in a regular
asm { ... } block. In addition, codes of the form “%n” are substituted with the

corresponding operand. n is an input or output operand number, starting at “%0”.
To put a “%” in your asm code, use two of them (“%%”).

Each input or output operand uses the following syntax:

"constraint string" ( expression )

The constraint specifies how the “%n” string will be substituted, and what semantic
effect that will have on the expression. The expression provides the value that will
be given to the assembly code, or an lvalue for where an output operand will be
stored.

DCXX supports the following constraint strings:

r General Purpose Register number

d data (general purpose) register number, same as “r”

a addressing register number (non-zero GPR)

dp data regpair (even numbered GPR)

f Floating Point Register number

fp float regpair (the number of the first FPR in the pair)

m memory address of the form “ofs(index,base)”

Q memory address with no index reg, of the form “ofs(base)”

I unsigned 8-bit integer literal

J unsigned 12-bit integer literal

K signed 16-bit integer literal

i signed 32-bit integer literal

0 ... 9 matching constraint — use same register as corresponding operand

110 Systems/C++



The constraint string for an output operand may also have some prefix characters:

= write-only output operand

+ read-write output operand

& early clobber output operand

The default is as if “=” were specified, in which case the value of the register is copied
into the destination after the asm code is executed. For a read-write operand, the
value is copied into the register before the asm code is executed, and then copied
from the register to the destination afterwards, so that code can modify the value
in a register.

Early clobber (“&”) means that this output operand may be written within asm code
before all of the input operands have been read. Without “&”, DCXX may chose
to use the same register for one of the input operands as for a write-only output
operand, but “&” indicates they must use two separate registers.

The clobber list is a comma-separated list of strings indicating resources that are
modified by the asm code, and which DCXX needs to be aware of. The values may
be:

memory asm code writes to memory (this is assumed if one of the output operands
has the constraint “m” or “Q”

cc asm code modifies the condition code in the PSW register

rn asm code modifies GPR n

fn asm code modifies FPR n

Clobbered registers may also have the prefix “&”, which means they are clobbered
before all of the input operands are read. Otherwise, DCXX may use a clobbered
register for an input operand.

For example, the following code modifies a variable using a pointer:

int i = 1;
__asm(" ST %1,0(%0)" : : "a"(&i),"r"(123) : "memory");
printf("i is %d", i); /* prints "i is 123" */

Note that the %0 operand is an input operand, because from DCXX’s perspective,
it is just providing a value to the asm code, that value just happens to be an address
that will be written to. Without the “memory” clobber string, the compiler might
use a cached value for i in the printf call, instead of reading the value from memory
again.

To accomplish the same thing using “m” (memory) output operand:

Systems/C++ 111



int i = 1;
__asm(" ST %1,%0" : "m"(i) : "r"(123));
printf("i is %d", i); /* prints "i is 123" */

You can specify specific registers in your clobber list as an alternative to reserving
them with register(n) variables, so that the compiler knows it can’t count on
the value being the same after asm code. For example:

__asm(" invocation of macro that uses R3"::"r3");

Is roughly the same as:

{ __register(3) int r3; /* reserve R3 */
__asm {

invocation of macro that uses R3
}

}

Note that if you clobber a register which is reserved by the compiler (such as the
code base or frame base register), the execution will fail because the compiler will
still use the reserved register — DCXX relies on the reserved registers holding their
assigned values.

A matching constraint is typically used on an input operand to match an output
operand. The input operand then provides a specific value to be placed in the output
operand’s register before the asm code is executed. For example, this contrived code
adds i and a constant 11, then stores the result in j:

int i,j;
/* ... */
__asm(" LA %0,%2" : "=r"(j) : "0"(i),"J"(11));

Note that the input operand for i has its own operand number (%1), even though it
uses the same register as %0. That is why the constant literal integer 11 is identified
as %2.

112 Systems/C++



The GETMAIN example above could be expressed more simply using GCC-style inline
assembler:

void *getmain_result;
unsigned long size;

size = nnn; /* Size of the desired allocation */

__asm(" LR 1,%1\ n\
GETMAIN RU,LV=(%2),LOC=BELOW\ n\
LR %0,1"

: "=r"(getmain_result)
: "r"(0xf0000000) /* the value to put in R1 */
: "r0", "&r1", "cc");

The @ operator

The @ operator is a C++ language extension that produces the address of its operand
expression, similar to the normal C++ language & operator.

However, while & only operates on lvalue expressions, @ can operate on any expres-
sion.

In the contexts where & is valid, @ is the same as &.

If the expression operand to @ is an rvalue expression, @ will copy the expression to
an automatic-storage temporary and use the address of the temporary.

Furthermore, if the operand to @ is an array, the result is different than &. & applied
to an array produces the address of the first element of the array. However, @
applied to an array produces the address of an automatic temporary which contains
the address of the array. Note that string constants are arrays, so that @"STRING"
does not produce the address of the string constant, but the address of a temporary
which points to the string constant.

The @ operator can be used anywhere within the body of a function. Because it
creates an automatic temporary in some situations, the @ operator cannot be used
at file scope (e.g. cannot be used in file-scope or static initializations.)

The @ operator can be employed to assist in parameter passing when invoking non-C
language functions (e.g. assembly functions) that expect pass-by-reference parame-
ters instead of the typical C pass-by-value parmeters.

Systems/C++ 113



asm (“name”) qualifier on function declarations

The GNU extension asm ("name") can be applied to function declarations to
alter the name used in the generated object file.

The specification appears after the parameter section of a function declaration. For
example:

extern int func() __asm__("FUNC");

will cause the name FUNC to be used when the func function is referenced or defined.

This is equivalent to the #pragma map facility for mapping function names.

builtin functions

The compiler supports several builtin functions that are pre-declared and can be
referenced directly in the source.

builtin alloca

void builtin alloca(size t) Used to invoke allocate additional stack space.

builtin bswap16

uint16 t builtin bswap16(uint16 t) Performs byte swapping on a 2-byte value.
This will use machine instructions when allowed.

builtin bswap32

uint32 t builtin bswap32(uint32 t) Performs byte swapping on a 4-byte value.
This will use machine instructions when allowed.

builtin bswap64

uint64 t builtin bswap64(uint64 t) Performs byte swapping on a 8-byte value.
This will use machine instructions when allowed.

114 Systems/C++



builtin prefetch

void builtin prefetch(const void *addr, ...) Indicates the given address
will be referenced to reduce cache latency. When the architecture level supports
prefetch instructions they will be generated to indicate the data should be made
available for a subsequent reference.

ıaddr provides the address of the memory.

builtin prefetch also accepts two optional arguments, a compile-time constant
integer ırw that indicates read or write access, and compile-time constant integer
ılocality that indicates temporal locality. ırw can be the value 0 to indicate prepara-
tion for read access, 1 for write access. The default is 0. ılocality can be the value 0,
1, 2 or 3. A value of 3 indicates the memory has a high degree of temporal locality
(will be referenced soon) and should be kept in all levels of the cache.

Data prefetching does not cause a fault if the specified ıaddr is invalid; but the
expression itself must be valid to be evaluated.

If the target architecture level does not support the prefetch instructions, the ıaddr
expression is still evaluated to handle any potential side effects.

builtin memcpy

void * builtin memcpy(void *dest, const void *src, size t len) Implements
the C standard memcpy function.

builtin memset

void * builtin memset(void *dest, int val, size t len) Implements the C
standard memset function.

builtin memcmp

int builtin memcmp(const void *src1, const void *src2, size t len) Im-
plements the C standard memcmp function.

builtin strcpy

int builtin strcpy(char *dest, const void *src, size t len) Implements
the C standard strcpy function.

Systems/C++ 115



builtin strlen

size t builtin strlen(const char *src) Implements the C standard strlen
function.

builtin strcmp

int builtin strcmp(const char *src1, const char *src2) Implements the
C standard strcmp function.

builtin strcat

char * builtin strcat(char *src1, const char *src2) Implements the C stan-
dard strcat function.

builtin strchr

char * builtin strchr(const char *src, int val) Implements the C stan-
dard strchr function.

builtin strrchr

char * builtin strrchr(const char *src, int val) Implements the C stan-
dard strrchr function.

builtin strncat

char * builtin strncat(char *dest, const char *src, size t len) Imple-
ments the C standard strncat function.

builtin strncmp

char * builtin strncmp(const char *src1, const char *src2, size t len)
Implements the C standard strncmp function.

builtin strncpy

char * builtin strncpy(char *dest, const char *src, size t len) Imple-
ments the C standard strncmp function.

116 Systems/C++



builtin strpbrk

char * builtin strpbrk(const char *str, const char *src) Implements the
C standard strncmp function.

builtin fabs

double builtin fabs(double) Implements the C standard fabs function.

builtin fabsf

float builtin fabs(float) Implements the C standard fabsf function.

builtin fabsl

long double builtin fabsl(long double) Implements the C standard fabsl
function.

builtin abs

int builtin abs(int) Implements the C standard abs function.

builtin labs

long builtin labs(long) Implements the C standard labs function.

builtin popcount

int builtin popcount(unsigned int) Returns the number of 1-bits in the pa-
rameter.

builtin popcountl

int builtin popcountl(unsigned long) Returns the number of 1-bits in the
parameter.

Systems/C++ 117



builtin popcountll

int builtin popcountll(unsigned long long) Returns the number of 1-bits
in the parameter.

builtin frexp

double builtin frexp(double val, int *exp) Implements the C standard fr-
exp function.

builtin frexpf

float builtin frexpf(float val, int *exp) Implements the C standard fr-
expf function.

builtin frexpl

long double builtin frexpl(long double val, int *exp) Implements the C
standard frexpl function.

builtin huge val

double builtin huge val(void) For BFP values, when –fieee is specified, this
returns a positive IEEE Infinity. Otherwise, this returns the maximum HFP value.

builtin huge valf

float builtin huge valf(void) Similarly to builtin huge valf() but re-
turns a float value.

builtin huge vall

long double builtin huge vall(void) Similarly to builtin huge valf() but
returns a long double value.

builtin inf

double builtin inf(void) builtin inf() returns an IEEE +Inf value when
the –fieee options is enabled. For HFP it returns the largest positive HFP value.

118 Systems/C++



builtin inff

float builtin inff(void) Similarly to builtin inf() but returns a float
value.

builtin infl

long double builtin infl(void) Similarly to builtin inf() but returns a
long double value.

builtin nan

double builtin nan(const char *) This is an implementation of the ISO C99
function nan.

When the –fieee option is enabled, this returns an IEEE quiet NaN value. The
character string can be used to represent a payload incorporated int the mantissa. In
order for this to be a compile-time constant, the character string must be a compile-
time constant. The character string is evaluated with the strtoul function, and
thus the base of the character string can be specified by a leading 0 or leading 0x.
The value is truncated to fit into the IEEE mantissa.

For HFP values, builtin nan returns 0.0.

builtin nanf

float builtin nanf(const char *) Similarly to builtin nan() but returns
a float value.

builtin nanl

long double builtin nanl(const char *) Similarly to builtin nan() but
returns a long double value.

builtin nans

double builtin nans(const char *) Similar to builtin nan, except that an
IEEE mantissa is made a signaling NaN. The nans function is proposed by WG14
N965.

Systems/C++ 119



builtin nansf

float builtin nansf(const char *) Similarly to builtin nans() but returns
a float value.

builtin nansl

long double builtin nansl(const char *) Similarly to builtin nans() but
returns a long double value.

atomic functions

The C++ compiler supports the same atomic builtin functions as gcc does. These
functions provide atomic access to shared memory, so that no intervening operations
in other threads or tasks can produce an unpredictable result.

These functions take a memorder parameter, which indicates whether there should
be a scheduling barrier (and inter-CPU serialization point) before loads and after
stores. For read operations ( atomic load) and write operations ( atomic store,
atomic clear), DCXX will emit the barriers so long as the memorder is not
ATOMIC RELAXED. For read-modify-write operations, the strictest memory ordering

( ATOMIC SEQ CST) is assumed because they are implemented with the underlying
COMPARE SWAP CS instruction, which is always serialized.

The atomic functions are type-generic, one function name is used for all types.
The variants with the suffix n use or return the value directly, and must operate
on regular integer or pointer types. The variants without the suffix work by pointer
and can work on any types, including structs. When the underlying data is not an
integer or pointer, a call to a run-time function of the same name will be generated.
The run-time functions are provided in our C library with the prefix @@atmc. They
use a global lock, so they are not as efficient as the atomic operations that are
supported by the underlying hardware (1/2/4/8 byte operations).

atomic load n

type atomic load n(type *src, int memorder)

Returns *src (read of *src is atomic).

120 Systems/C++



atomic load

void atomic load(type *src, type *dst, int memorder)

Assigns *dst = *src (read of *src is atomic).

atomic store n

void atomic store n(type *dst, type src, int memorder)

Assigns *dst = src (write of *dst is atomic).

atomic store

void atomic store(type *dst, type *src, int memorder)

Assigns *dst = *src (write of *dst is atomic).

atomic exchange n

type atomic exchange n(type *dst, type src, int memorder)

Assigns *dst = src, and returns the original value of *dst (read and write of *dst
is atomic).

atomic exchange

void atomic exchange(type *dst, type *src, type *ret, int memorder)

Assigns *ret = *dst then *dst = *src, as a single atomic operation (read and
write of *dst is atomic).

atomic compare exchange n

bool atomic compare exchange n(type *dst, type *expected, type desired,
bool weak, int success memorder, int failure memorder)

Evaluates if (*dst == *expected) *dst = desired as a single atomic operation,
returning 1 if the assignment was performed (read and write of *dst is atomic). weak
is ignored, but would indicate that the operation is allowed to intermittently fail
(return 0 and not perform the assignment) even if the comparison is true.

Systems/C++ 121



atomic compare exchange

bool atomic compare exchange(type *dst, type *expected, type *desired,
bool weak, int success memorder, int failure memorder)

Evaluates if (*dst == *expected) *dst = *desired as a single atomic opera-
tion, returning 1 if the assignment was performed (read and write of *dst is atomic).
weak is ignored, but would indicate that the operation is allowed to intermittently
fail (return 0 and not perform the assignment) even if the comparison is true.

atomic OP fetch

type atomic add fetch(type *dst, type val, int memorder)
type atomic sub fetch(type *dst, type val, int memorder)
type atomic and fetch(type *dst, type val, int memorder)
type atomic xor fetch(type *dst, type val, int memorder)
type atomic or fetch(type *dst, type val, int memorder)
type atomic nand fetch(type *dst, type val, int memorder)

Evaluates *dst = *dst OP val, and then returns the result (read and write of *dst
is atomic).

atomic fetch OP

type atomic fetch add(type *dst, type val, int memorder)
type atomic fetch sub(type *dst, type val, int memorder)
type atomic fetch and(type *dst, type val, int memorder)
type atomic fetch xor(type *dst, type val, int memorder)
type atomic fetch or(type *dst, type val, int memorder)
type atomic fetch nand(type *dst, type val, int memorder)

Evaluates *dst = *dst OP val, and returns the original value in *dst from before
the operation (read and write of *dst is atomic).

atomic test and set

bool atomic test and set(void *dst, int memorder)

Sets the byte at *dst to a non-zero value, and returns 1 if and only if the original
value of *dst was already non-zero (read and write of *dst is atomic). This is
less efficient than atomic exchange n operating on a 32-bit integer, because the
instruction set does not provide an atomic compare-and-swap instruction for 8-bit
values.

122 Systems/C++



atomic clear

void atomic clear(bool *dst, int memorder)

Assigns the byte at *dst to zero (write of *dst is atomic). This is less efficient than
atomic store n operating on a 32-bit integer, because the instruction set does not

provide an atomic compare-and-swap instruction for 8-bit values.

atomic ... fence

void atomic thread fence(int memorder)
void atomic signal fence(int memorder)

These functions are identical and provide a barrier and synchronization.

atomic ... lock free

bool atomic always lock free(size t size, void *ptr)
bool atomic is lock free(size t size, void *ptr)

These return 1 if atomic operations on types of the given size can be performed
efficiently without locks, using hardware instructions. They always return 1 for
sizes of 1/2/4/8 bytes. Returns 0 for other sizes, which use a global lock. The ptr
argument is ignored.

#pragma compiler directives

DCXX supports several #pragma directives:

#pragma options(opt[,opt]...)

Specifies compile-time options in the C++ source code. A #pragma options must
appear before any C++ source.

Options specified in the #pragma options are not reflected in the compiler listing.
The listing displays the default and command-line option values.

If a #pragma options value conflicts with the option value specified on the command
line, the compiler uses the command-line specified value.

Currently only the #pragma options(RENT) option is supported, all other options
are ignored.

Systems/C++ 123



#pragma prolkey(identifier, “key”)

Using #pragma prolkey allows the user to tailor certain function entry points by
adding additional macro arguments.

#pragma prolkey specifies that the string “key” is to be appended to the keyword
list for the prologue macro associated with the entry point named identifier. The
string “key” will be copied verbatim and added to the end of the typical macro
arguments for the entry point.

The #pragma prolkey directive must appear before the function definition.

#pragma epilkey(identifier, “key”)

#pragma epilkey specifies that the string “key” is to be appended to the keyword
list for the epilogue macro associated with the entry point named identifier. The
string “key” will be copied verbatim and placed on the epilogue macro invocation
for the entry point.

Using #pragma epilkey allows the user to tailor certain function epilogues by
adding additional macro arguments.

The #pragma epilkey directive must appear before the function definition.

#pragma map(identifier, “name”)

#pragma map specifies that external references to functions or data named identifier
are to be replaced with the string specified in “name.” The “name” value becomes
the value for any ALIAS statements emitted in the generated assembly language
source.

The #pragma map directive may appear anywhere in the compilation.

The identifier specified in a #pragma map may have C or C++ linkage. If the iden-
tifier has C++ linkage, then the identifier can not specify an overloaded function.

#pragma weakalias(identifier, “name”)

#pragma weakalias specifies that a weak definition with of a symbol named name
should be generated which has the same value as the variable identified by identifier.

The #pragma weakalias directive may appear anywhere in the compilation.

Note that if the –fnoalias stmts is enabled, #pragma weakalias is not supported.

124 Systems/C++



#pragma weakalias works on most platforms for both global functions and global
variables. However, for re-entrant data based off of the PRV, it is impossible to
make a weak alias. This is due to limitations in the object formats’ treatment of
Q-cons – it is impossible to make two Q-cons with different names but the same
address.

#pragma noinline(identifier)

Tells the optimizer not to inline the named function even if other heuristics suggest
that it could be inlined. This can be useful for certain constructs — such as asm
blocks — which are not amenable to being copied.

#pragma error “text”

#pragma error "text" causes the compiler to generate an error message. The error
message will include the specified text.

#pragma warning “text”

#pragma warning "text" causes the compiler to generate a warming message. The
warning message will include the specified text.

#pragma eject

#pragma eject causes the listing to move to a new page.

#pragma page(n)

#pragma page(n) causes the listing to move forward n pages. n is optional, and if
not provided causes the compiler to move forward one page.

#pragma pagesize(n)

#pragma pagesize(n) sets the number of lines on subsequent pages in the listing
to n. n should not be less than 20.

Systems/C++ 125



#pragma showinc

#pragma showinc causes the compiler to include source lines from #include files in
the listing. This can be used to selectively add some #include source lines in the
listing while leaving out others. Use #pragma noshowinc to cause source lines from
#include files to be skipped in the listing.

#pragma noshowinc

#pragma noshowinc causes the compiler to not include source lines from #include
files in the generated listing. This can be used to selectively skip some #include
source lines. Use #pragma showinc to re-enable listing of #include source lines.

#pragma pack(n)

#pragma pack specifies the maximum structure element alignment for structure type
declarations.

Normally, the C++ compiler aligns elements in a structure based on their natural
alignment. #pragma pack can be used to impose a maximum alignment, so that no
element of a structure will have an alignment greater than the one specified in the
#pragma pack. Elements which have natural alignments smaller than specified in a
#pragma pack continue to be aligned on their natural boundary.

#pragma pack can specify, 1, 2, 4, 8 and 16 byte maximum alignment values.

The values specified via #pragma pack are stacked, a #pragma pack(reset) can be
used to restore the previous value. When the –fc370 option is not specified, DCXX
also recognizes #pragma pack(pop) as equivalent to #pragma pack(reset).

There are alternate keywords which can be employed instead of numeric values.
#pragma pack() selects default packing. #pragma pack(full) is equivalent to
#pragma pack(4). #pragma pack(twobyte) is equivalent to #pragma pack(2) and
#pragma pack(packed) is equivalent to #pragma pack(1).

Specifying no parameter in a #pragma pack is equivalent to #pragma pack(4).

If –fztpf or –flinux was specified on the commandline then the structures produced by
DCXX are compatible with g++ for all of the #pragma pack settings. If –fc370 is
specified then the structure layout is compatible with IBM’s compilers for Language
Environment. An additional setting of #pragma pack(le) is available which causes
structures to be laid out to be compatible with Language Environment, even if
compiling for a different platform, such as z/TPF.

126 Systems/C++



#pragma weak(identifier)

#pragma weak indicates that the identifier is either a weak reference or, when –flinux
is specified, a weak definition.

For Systems/C++ (–flinux not specified) programs, only weak references are sup-
ported. Weak references apply to either functions or non-reentrant data. A #pragma
weak applied to reentrant data has no effect. A weak reference generates a WXTRN
reference in the resulting assembly source, instead of the default EXTRN reference.
For example, the following code declares weak func() as being a weak external
function. It then tests to see if weak func() is defined before calling it:

#pragma weak(weak_func)

void weak_func(void);

main()
{

/* If weak_func is defined, call it. */
if(weak_func) {

weak_func();
}

}

When –flinux is specified, a #pragma weak may apply to either functions or data,
and may be applicable to either references or definitions. The Linux linker will allow
multiple weak definitions of the same function or data without complaint.

#pragma ident “str”

#pragma ident "str" instructs the compiler to add str to the generated object as
data. It will not necessarily be loaded into memory at run time, but it will be in the
object. This feature is commonly used for versioning and copyright information. It
is an alternative to the construct

static const char ident[] = "@(#)$Id: prog.c,v 1.42 $";

but it is guaranteed to never elide the string as unreferenced.

#pragma comment(user, “str”)

#pragma comment(user, "str") is equivalent to #pragma ident "str".

Systems/C++ 127



#pragma enum(enum size)

#pragma enum defines the amount of storage enumeration values consume in IBM
compatibility mode.

The enum size value can be one of SMALL, INT, 1, 2, 4, pop or reset.

Enumeration size settings are stacked. The enumeration size can be restored to its
previous value using the pop or reset option.

SMALL is the default enumeration packing rules supported in the IBM compiler.
That is, enumeration values are packed to the smallest amount of storage that can
contain the range of the enumeration values.

INT indicates that the size of the enumeration will be 4 bytes.

1, 2 and 4 indicate that the size of the enumeration will be the number of bytes
specified.

#pragma csect(section, “name”)

Specifies the name to use for a particular section. The types of allowed sections are
CODE, STATIC, and TEST.

When compiling in IBM compatibility mode (–fc370 is enabled), this pragma op-
erates identically to the IBM C #pragma csect pragma. Otherwise, this pragma
can be used to set the section name value similarly to the –fname compiler option.
Setting the CODE section name to name is equivalent to specifying –fsname=name
on the compiler command line.

This pragma is useful for specifying the section name directly in the source file
instead of via JCL or some other mechanism.

Only one #pragma csect can be specified for a particular section. A #pragma csect
specification overrides any –fsname option specified on the compiler command line.

Note that #pragma csect(TEST, "name") is only meaningful when compiling in
IBM compatibility mode (when the –fc370 is specified.)

extern “ALIGN4”

The extern "ALIGN4" linkage can be applied to either function definitions or dec-
larations to alter this default 8-byte alignment when –mlp64 is specified.

If a extern "ALIGN4" applies to a function then calls to the function will assume
parameters are aligned on 4-byte (fullword) boundaries. Note that ALIGN4 linkage

128 Systems/C++



does not affect the size of the paramaters, a long or pointer value will continue to
be 8 bytes in size. It will simply be aligned on a 4-byte boundary instead of an
8-byte boundary.

For example, in the following declaration:

extern "ALIGN4" {
void func(int size, void * __ptr31 starting_address) ;
}

the func function’s arguments will be at offset zero (size) and offset 4 (starting address.)
Also notice that in this example the ptr31 qualifier was specified to indicate that
the void * pointer is a 4-byte pointer.

extern “OS”

External functions and function pointers can be declared with extern "OS" linkage
to indicate the function is to be called with the basic linkage convention used by the
operating system.

Parameters to these extern "OS" functions that are not pointers are passed as
addresses to temporary copies of the actual parameters, so that the function receives
pointers to the actual parameters. If the parameter is not a pointer, and the type
of the parameter is less than 4 bytes in size; it is promoted to an int type before
making the copy. Also, the last argument’s “VL-bit” will be set. That is, for the
last pointer argument, the pointer will be ORed with 0x80000000.

The compiler assumes that any return value from an extern "OS" function is in
register 15. Register 0 will be set to zero before the function call. Also, before
calling the extern "OS" function, the first 12 bytes of the local save area are copied
into a temporary location and restored on return.

extern “PLI”

Similar to extern "OS", extern "PLI" can be used to define functions and func-
tions pointers that represent PLI-style linkage.

Parameters to these extern "OS" functions that are not pointers are passed as
addresses to temporary copies of the actual parameters, so that the function receives
pointers to the actual parameters. If the parameter is not a pointer, and the type
of the parameter is less than 4 bytes in size; it is promoted to an int type before
making the copy. Also, the last argument’s “VL-bit” will be set. That is, for the
last pointer argument, the value will be ORed with 0x80000000.

Systems/C++ 129



Also, extern "PLI" functions don’t return any return values in the normal mech-
anism. For these functions, an extra argument is added which is a pointer to a
temporary location to contain the return value.

64-bit arithmetic — long long

DCXX supports both the long long and unsigned long long data types. long
long and unsigned long long are 64 bits (8 bytes), with a 4-byte, or fullword
alignment.

Functions that return a long long or unsigned long long datum return the value
in register 15 and register 0. The most significant bits of the value are in register
15.

DCXX also supports extended long long integral constants. These are specified
with the ULL and LL suffixes.

130 Systems/C++



C preprocessor extensions

DCXX supports several common C preprocessor extensions.

#warning

A #warning preprocessor control line causes a warning message to be generated.
Any text following the #warning is provided in the generated message.

For example the following #warning control lines:

#warning "This is a warning"

#warning

#warning a string

will cause the following diagnostics to be generated:

cxx: file line #: Warning #1048: #warning "this is a warning"

cxx: file line #: Warning #1048: #warning

cxx: file line #: Warning #1048: #warning a string

#include next

#include next is intended to “skip” in the –I search list when searching for #include
files. #include next indicates that the search for a #include file should begin at
the next element in the –I search list from wherever the current file was located.

If the current file was specified using an absolute path name, then #include next is
treated as #include. If the current source is the primary source file, #include next
is treated as #include and a warning diagnostic is generated.

#ident

#ident "str" is simply a shorter form of #pragma ident "str". It is used to put a
comment in the generated object code, such as a version or copyright message.

Systems/C++ 131



Remote function pointers

DCXX provides a remote function pointer facility, that can be used to build pro-
grams that invoke functions in other (dynamically loaded) load modules on z/OS.

When the –ffpremote option is enabled, a function call that is accomplished through
a (remote) function pointer saves the current PRV base in the local frame, loads a
new PRV value from the function pointer, then loads the actual function address
from the function pointer and branches to the function.

Thus, a remote function address is actually a pointer to a container that contains
the new PRV base, and the actual function address. It is not actually the address
of the code to branch to.

A remote function pointer container is generated when the address of a function is
taken, or when a function pointer value is converted to a remote function pointer.

The compiler generated assembly code employs the DCCSTPRV macro to indicate
that the PRV value should be saved at the specified location. There is a DCCSTPRV
macro that is provided for use with the Systems/C runtime, and it can be altered to
accomodate any particular runtime environment. The –fstprv=NAME option can
be used to cause the compiler to invoke a different macro.

When –ffpremote is not enabled, the remote keyword can indicate a remote func-
tion pointer. Similarly, the local keyword can indicate that the give function
pointer is “direct”, that it is local to the load module of the caller and does not
need a unique PRV. Example usage of remote and local keywords:

typedef void __remote (*remote_fp)(void);
typedef void __local (*local_fp)(void);

Note that, while a remote function pointer can be converted to a local function
pointer, it is not advisable. Invoking that function pointer would not switch the
PRVs to the remote load module’s PRV, and the invoked function would likely fail
mysteriously (or catastrophically) as a result. The compiler generates a warning for
this situation.

132 Systems/C++



Special “built-in” implementations for common C library
functions.

DCXX provides built-in implementations for some of the more common C library
functions. These built-in functions are used when the <string.h> system header
file is included. These include:

memcpy()
memset()
memcmp()
memchr()
strcpy()
strlen()
strcmp()
strcat()
strchr()
strncat()
strncmp()
strncpy()
strrchr()
strpbrk()

#include <string.h> to take advantage of the built-in versions of these functions.

Systems/C++ 133



134 Systems/C++



Programming for
z/Architecture

Systems/C++ supports programming for the new z/Architecture machines, sup-
porting the new z/Architecture instructions and 64-bit addressing mode.

The compiler can take advantage of z/Architecture instructions when either 32-bit
or 64-bit code generation is selected, using the –march=z option. The specification
of –mlp64 implies –march=z.

When z/Architecture mode is enabled, Systems/C will generate z/Architecture in-
structions.

z/Architecture instructions

When the –march=z option is enabled, Systems/C uses the newer z/Architecture
instructions. This provides for 64-bit programming when –mlp64 is specified and
offers other improvements for 32-bit programs when –milp32 is specified.

When –mlp64 is specified, values retained in registers typically use the complete
64-bit register. This allows for a seamless translation between the int and pointer
types, supporting existing, although not recommended, C practice.

64-bit z/Architecture programming model

When the –mlp64 option is enabled, Systems/C++ generates z/Architecture instruc-
tions, enabling 64-bit addressing. In this mode, long and pointer data is 64-bits
wide, and are aligned on a 64-bit boundary, the natural alignment for these types
on the z/Architecture.

This size and alignment for long and pointer data is also known as the “LP64”
programming model. The LP64 programming model is currently used on the most
popular UNIX, and Linux 64-bit implementations, maximizing portability with these
platforms.

Systems/C++ 135



For example, the following structure would be 16 bytes in size, and would be aligned
on a 8 byte boundary:

struct big_struct {
long long_field; /* 8 bytes long */
void *ptr_field; /* 8 bytes long */
}

In non-z/Architecture mode, this structure would only be 8 bytes long, and aligned
on a 4-byte boundary.

It is important to note that the long long data types are simply treated as equiv-
alent to the long data types. Thus, in z/Architecture mode, the long long data
types are also aligned on 8-byte boundaries.

Parameter passing and return values.

When –mlp64 is specified, and –flinux or –fc370 is not specified, Systems/C continues
to use a parameter passing linkage similar to the typical OS/390 linkage. That is,
register R1 points to the parameter block.

In 64-bit mode (–mlp64 is specified), Systems/C++ aligns parameters on natural
register boundaries. That is, parameters are aligned on 8 byte (double word) bound-
aries. Integral values which are smaller than 8 bytes are right-justified in the 8-byte
field.

For example, in calling the function with this prototype:

void func(char a, int b, void *c);

The value for the first parameter, a, would be at offset 7, bytes 0-7 would be cleared.
The value for b, would be at offset 12, with bytes 8-11 cleared. And, the value for
the parameter c would be at offset 16, using a full 8 bytes.

The extern "ALIGN4" linkage can be applied to either function definitions or dec-
larations to alter this default 8-byte alignment. If a extern "ALIGN4" applies to
a function then calls to the function will assume parameters are aligned on 4-byte
(fullword) boundaries. Note that ALIGN4 linkage does not affect the size of the para-
maters, a long or pointer value will continue to be 8 bytes in size. It will simply be
aligned on a 4-byte boundary instead of an 8-byte boundary.

Return values from functions are also affected by the –mlp64 option. When returning
values smaller than a 64-bit register, the value will be promoted to completely fill
the register. Thus, functions that are undeclared, but return pointer values will
continue to work as expected. Although, this is certainly not recommended for
portable programs. For example, the following code will operate correctly:

136 Systems/C++



/* note - this function does not define a return type, */
/* and thus is assumed by the compiler to return */
/* ‘int’ */
undeclared_pointer_return()
{
static char array[20];
return array;

}

void call_func(void)
{

char *ptr_value;

/* The compiler will generate a warning on this */
/* statement, regarding the conversion of the */
/* ‘int’ integral type to a pointer, but the */
/* correct pointer value will be assigned. */

ptr_value = undeclared_pointer_return();
}

This approach allows older C code to remain compatible with the newer z/Architecture
system.

AMODE and address calculations

It is important to recognize that the LP64 model does not require a 64-bit addressing
mode. It simply indicates that pointers and long data can contain 64-bit values.
Systems/C supports these values even when the AMODE is not 64-bits. This allows
64-bit addresses/data to be manipulated by 31-bit programs.

Normally, when –mlp64 is specified, Systems/C++ assumes the AMODE is 64. With
this assumption, Systems/C++ can generate LOAD-ADDRESS instructions for address
calculations. However, if the –famode option is used to specify an addressing mode
other than 64, Systems/C++ will generate z/Architecture code that can be used in
any runtime AMODE. In this mode of operation, Systems/C++ will not use a LOAD-
ADDRESS (LA) instruction to perform address calculations, instead using arithmetic
instructions to perform these calculation. This allows the code to properly execute,
and retain complete 64-bit addresses in any addressing mode.

Also when –milp32 is specified, pointer arithmetic on ptr64 qualifier pointers
will not use the LOAD-ADDRESS instruction, instead using other instructions to
perform the necessary operation. This allows pointer arithmetic on ptr64 qualified
pointers to properly operate in any environment.

Systems/C++ 137



ptr64 qualifier

Pointers may be qualified with the ptr64 qualifier, which indicates the pointer con-
tains 64-bit addresses. This is most useful when –milp32 is specified, as when –mlp64
is specified, normal pointers contain 64-bit address. ptr64 qualified pointers are
8 bytes long, and aligned on 8-byte boundaries. These pointers can be manipulated
and used even when –milp32 is specified.

z/Architecture instructions will be used for loading, storing and manipulating ptr64-
qualified pointers, regardless of the –mlp64 or –milp32 setting.

When –milp32 is specified, pointer arithmetic performed on ptr64 qualified point-
ers is calculated using z/Architecture arithmetic instructions. When –mlp64 is spec-
ified, ptr64 qualified pointers are treated as normal pointers.

ptr64 qualified pointers can be used in 31-bit code to retain and manipulate values
passed to/from z/Architecture routines.

For example, in the following routine, the variable big pointer is acquired from
another function (possibly an assembler function) and then incremented. This could
could appear in any Systems/C function, regardless of the –mlp64 or –ilp32 setting:

/* acquire_ptr() returns a 64-bit address */
extern char * __ptr64 acquire_ptr();

char * __ptr64 big_pointer;

big_pointer = acquire_ptr();
big_pointer += 10; /* increment pointer by 10 bytes */

When –milp32 is specified, dereferencing a ptr64 qualified pointer will cause the
compiler to generate a warning, indicating that a potential 64-bit address is being
deferenced when the AMODE could be something other than 64-bits.

Also, the ptr64 qualifier can be used in parameter passing, when invoking a
z/Architecture module from 31-bit code.

In the following example, BIG is passed a 64-bit long long value for the size of a
data area, and a 64-bit pointer. When calling from 31-bit code, the compiler will
automatically promote the values appropriately:

138 Systems/C++



void BIG(long long, char * __ptr64);

void
func31(void)
{

int size;
char *ptr;

size = 100;
ptr = malloc(size); /* allocate 100 bytes */

/* Invoke the z/Architecture "BIG" */
/* function passing the size and a pointer */
/* to the allocated space. */
BIG(size, ptr);

}

The source for BIG, compiled with the –mlp64 option enabled might look similar to
this:

#pragma prolkey(BIG,"DCALL=YES")
void BIG(long long size, char * __ptr64 ptr)
{
long i;
for(i=0;i<size;i++) {

*ptr = 0;
}

}

Note that is declared to be a Systems/C Direct-CALL (DCALL) function, to be
properly invoked from a 31-bit environment.

ptr31 qualifier

As with the ptr64 qualifier, pointers may be qualified with the ptr31 qualifier.
Such pointers are 4 bytes long and aligned on 4-byte boundaries.

This allows for defining and referencing 31-bit addresses, even when the AMODE is
64.

For example, the following structure defines an integer, followed by a 31-bit address:

struct example31 {
int integer_field;
char * __ptr31 pointer_field;

};

Systems/C++ 139



This can be quite useful for accessing 31-bit data structures when –mlp64 is specified.

When –mlp64 is specified Systems/C++ will automatically convert ptr31 qualified
addesses into 64-bit addresses when the pointer is dereferenced.

Similarly, any 64-bit addresses will be truncated when stored into ptr31 qualified
pointers.

The ptr31 qualifier can also be useful when invoking z/Architecture code from
ESA code, and passing 31-bit pointers. For example, in the following, the function
ENTRY is a Systems/C DCALL function, which is compiled with the –mlp64 option
enabled:

extern "ALIGN4" {
#pragma prolkey(ENTRY,"DCALL=YES")

void
ENTRY(int size, void * __ptr31 starting_address)
{
int i;

/* zero-out ’size’ bytes */
for(i=0;i<size;i++) {

*starting_address = 0;
}

}

}

The parameter starting address is passed as a 31-bit pointer and can be readily
used by the z/Architecture function. The compiler will automatically promote the
31-bit pointer to its complete 64-bit value when it is dereferenced. Note also that
ALIGN4 linkage was applied to ENTRY so that it could be invoked from a 31-bit
environment.

Systems/C++ z/Architecture library

When neither –flinux or –fc370 are specified, the resulting program is intended to
be linked with the Systems/C++ and Systems/C z/Architecture library. These
libraries completely support running programs in z/Architecture mode, with all
data, including stack, heap and re-entrant data, being loaded above the 4-gigabyte
“bar.”

For more particular details regarding the Systems/C++ and Systems/C z/Architecture
libraries, see the Systems/C++ Library and Systems/C Library manuals.

140 Systems/C++



Linking with the Systems/C++ and Systems/C z/Architecture libraries is only
slightly different from the normal link process. All that needs to be done is specifi-
cation of the alternate library.

Systems/C provides a reentrant and non-reentrant z/Architecture libraries. On
cross-platform hosts, these objects are in the objs rent z and objs norent z di-
rectories. On OS/390 and z/OS, these are in the LIBCRZ and LIBCNZ PDSes. To
use the Systems/C z/Architecture library, simply specify these directories/PDSs in
place of the non-zArchitecture versions.

For example, JCL to execute the PLINK pre-linker with the Systems/C z/Architecture
reentrant library would be similar to the following:

...
//PLINK EXEC PGM=PLINK
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSOUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCRZ.OBJ,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj,DISP=NEW

The same command on a UNIX or Windows platform might be:

plink -omyoutput.obj prog.obj "-SC:\sysc\objs_rent_z\&M"

assuming Systems/C was installed in the C:\sysc directory.

Systems/C++ 141



142 Systems/C++



Programming for OpenEdition

Systems/C++ supports creating OpenEdition programs which are executed from
the Hiearchical File System (HFS.) This includes 31-bit and 64-bit programs.

The Systems/C C Library and Systems/C++ C++ Library manuals contain de-
tailed information about how to produce OpenEdition programs and the runtime
environment supported under OpenEdition.

Systems/C++ 143



144 Systems/C++



Programming for MVS 3.8

Systems/C++ supports creating programs for the MVS 3.8 operating system. Gen-
erally, the full support of the Systems/C library is available, with the restrictions
inherent in the MVS 3.8 environment.

The Systems/C++ C++ Library and Systems/C C Library manuals contain detailed
information about how to produce MVS 3.8 programs.

Systems/C++ 145



146 Systems/C++



IBM C++ Compatibility Mode

The Systems/C++ compiler, DCXX, can produce assembly language source that,
when assembled with the Systems/ASM assembler, is object compatible with IBM’s
C++ product.

This facility allows DCXX to be used as an IBM C++ compatible cross-hosted
compiler. Thus, you can generate IBM C++ compatible objects on any of the
cross-platform hosts supported by Systems/C++ and the Systems/ASM assembler
for eventual linking in an IBM C++ environment.

Requirements

Using DCXX to compile in IBM C++ compatibility mode requires the availability
of the IBM C++ system include files. If OS/390 V2.4 or later is available, these
can e found in the /usr/include directory in the HFS file system.

Using IBM’s NFS or SMB server facilities, these can be made available to any cross-
platform host for use by DCXX.

Also, to link the eventual objects into an executable program, you will need the IBM
C and C++ libraries installed on your mainframe. The IBM C++ documentation
describes the procedures used for linking IBM C++ programs.

How Systems/C++ differs from IBM C++

When the –fc370 option is used, DCXX is very compatible with IBM C++ object
code, although there are some differences that need to be noted.

There are some different requirements for #pragma directives, described in the sec-
tion on #pragmas.

The –fc370 option sets various other options to match the IBM compiler.

Systems/C++ 147



Differences from Systems/C++

The objects generated in Systems/C++ mode cannot be directly linked into an IBM
C++ program.

Alternatively, the Systems/C Library’s Direct-CALL (DCALL) feature can be em-
ployed to create a Systems/C environment when the Systems/C++ functions are
invoked. Note that the Systems/C functions should not invoke or use any of the
IBM C library functions, as the IBM C library functions will be called outside of an
IBM C runtime context.

Consult the IBM C documentation for the appropriate information on how to invoke
assembler language functions from IBM C.

The –fansi bitfield packing option

IBM C bitfield sizes and allocation vary based on the value of the LANGLVL
option specified on the IBM C compile step. When running under TSO or BATCH,
or with the c89 compiler driver, IBM C will default to LANGLVL=ANSI. When
run with the cc compiler driver, IBM C defaults to LANGLVL=COMMONC.

When LANGLVL=ANSI, IBM C will allocate bitfields and align structures con-
taining bitfields so that the fewest bytes are used. DCXX will follow the same
algorithm when the –fansi bitfield packing option is enabled on the DCXX com-
mand line.

When LANGLVL=COMMONC, IBM C will pad structures that end in bitfields
to account for the remaining bits declared in the bitfield type, as many C compilers
do. When –fansi bitfield packing is not specified on the command line, DCXX
follows this algorithm.

Thus, DCXX provides complete structure and bitfield compatibility with IBM C.
If the structure sizes or member offsets vary from IBM C++, examine the value
of the LANGLVL option in the IBM C++ listing and set –fansi bitfield packing
appropriately.

Also the STRUCTURE MAP section in the DCXX listing can be helpful in determining
offsets.

Assembling with Systems/ASM assembler

Assembling the output of DCXX in IBM C++ compatibility mode requires the
use of the Systems/ASM assembler, DASM. Using the Systems/ASM assembler,

148 Systems/C++



IBM C++ compatible objects can be generated on any of the supported platforms,
including OS/390, z/OS and the cross-platform hosts.

There are two important Systems/ASM options to consider when assembling the
compiler-generated assembler source in IBM C++ compatibility mode, the –batch
option and the –idr option.

The –batch option is enabled by default and should not be disabled. When compiling
in IBM C compatibility mode, the compiler generates more than one set of assembly
source per file, requiring the –batch option. –batch is enabled by default in the
Systems/ASM assembler.

The –idr option is used to provide specific information in the IDR section of END
cards generated by the assembler. The IBM C++ pre-linker and IBM binder ex-
amine the IDR information to verify that the object deck was properly generated
and that the object format is supported by this particular version of the pre-linker
and/or binder. For compatibility with IBM C V1R3, the IDR value should be
“5645001 1300”. For V2R4 compatibility, the IDR should be “5647A01 2400”.
Note that there are three spaces between the two parts of each of these IDR values.

A typical Systems/ASM assembler command line on a UNIX platform, when as-
sembling sources compiled with the –fc370=v2r4 option would be:

dasm -fdupalias -idr "5647A01 2400" -o object ... file.asm

For version 1.95 and later, the DCXX compiler will place *PROCESS lines in the
generated assembly source that cause the –fdupalias and –idr values to be appropri-
ately set. Thus, for version 1.95 of DCXX and later the –fdupalias and –idr options
are not required on the Systems/ASM (DASM) assembler command line.

Consult the Systems/ASM documentation for more information about these options
and how to use the Systems/ASM assembler on your system.

Pre-Linking

On cross-platform hosts, the Systems/C pre-linker (PLINK) is capable of perform-
ing all of the pre-linking tasks needed for IBM C objects. When an IBM Extended
Object Module is discovered in the input objects, PLINK switches to “IBM mode,”
and operates in a fashion compatible with the IBM pre-linker.

Alternatively, the IBM pre-linker (EDCPRLK) can be employed to pre-link IBM Ex-
tended Object Module objects. Or, on newer systems, the IBM binder can directly
process these objects.

Consult the Systems/C Utilities manual for more information about using PLINK
to pre-link IBM Extended Object Modules.

Systems/C++ 149



Linking

The perform the final link of IBM Extended Object Modules, the IBM linker can
be employed. For cross-platform hosts, the pre-linked object can be transferred to
the mainframe host for use by the mainframe linker.

Alternatively, for cross-platform hosts, PLINK can be employed to create a TSO
TRANSMIT module, which can then be RECEIVE’d on the mainframe platform.

To learn more about how to use PLINK to produce load modules on cross-platform
hosts, consult the Systems/C Utilities manual.

Debugging

Debugging of DCXX-generated objects is fully supported.

The IBM dbx or C/370 Debug debuggers can debug -DCC-generated files in IBM
compatibility mode. In IBM compatibility mode, the compiler can generate “ISD”
debugging information or the newer DWARF debugging information, compatible
with the information generated by the IBM compilers.

When using the Dignus runtime library or other modes, the Systems/DBG debugger
DDBG can be used to debug programs. To learn more about the DDBG debugger,
consult the Systems/DBG manual.

To request that the compiler generate debugging information, add the –g option.

Example

In the following example, we are compiling the two sources, file1.c and file2.c in
IBM compatibility mode, targetting OS/390 2.6. Then, we perform the pre-linking
operation on the cross-platform host, resulting in an object suitable for final linking
on the mainframe host.

It is assumed that the IBM system include files have been made available in the
IBM-include-directory, via some network or other mechanism (e.g. NFS.)

First, compile and assemble each of the files:

dcxx -fc370=v2r6 -IIBM-include-directory file1.c
dasm -fdupalias -idr "5647A01 2600" -o file1.o file1.s

dcxx -fc370=v2r6 -IIBM-include-directory file2.c
dasm -fdupalias -idr "5647A01 2600" -o file2.o file2.s

150 Systems/C++



Then, we use PLINK on the cross-platform host to pre-link the two files. Also,
in this step, we assume the IBM object files are available in a DAR archive, pre-
pared from the appropriate PDS on the mainframe. Again, this could be via a
network mechanism from the mainframe. In this example, the DAR archive is
named libsceeobj.a and resides in the directory ibmlibs. The resulting output
file is written to prog.obj

plink -oprog.obj file1.o file2.o -Libmlibs -lsceeobj

At this point, prog.obj is the pre-linker output file and is ready to transmit to the
mainframe for final linking.

Systems/C++ 151



152 Systems/C++



Customizing DCXX-generated
Assembly Source

The assembly source generated by DCXX can be customized in several ways to
assist in development.

Altering the generated assembly source will prevent the use of the Systems/C C
and C++ libraries. Furthermore, re-entrant variables (–frent) should be used with
caution. Your own run-time library will need to properly allocate the PRV and
initialize re-entrant variables.

Specifying alternate Entry/Exit macros

By default, DCXX generates invocations of the Systems/C prologue and epilogue
macros, DCCPRLG and DCCEPIL. These macros will suffice in many situa-
tions. However, when producing assembly code that will become part of an existing
program, it may not be appropriate to include all of the function provided by the
Systems/C environment. Typically, in an existing program, there are existing pro-
logue and epilogue macros already in use. DCXX can be instructed to use those
macros instead of the Systems/C macros, generating assembly source that can be
assembled and linked into your existing program.

The assembly code generated by DCXX makes several assumptions that you must
ensure are preserved by your own prologue and epilogue macros:

The prologue macro is responsible for saving the previous values of the
registers in the caller’s register save area.

The prologue and epilogue are responsible for maintaining the run-time
stack. The size of local stack space required for a function will be named
as the FRAME argument to the macro invocation. The generated code
assumes that the frame register is completely updated at completion of
the epilogue code. By default, the frame register is R13, but it can be
changed via the –fframe base= option. If the size of the local data is
greater than 4096, then a literal, @FRAMESIZE nnn, will also be

Systems/C++ 153



allocated which is guaranteed to be addressable in the first 4K region to
contain the frame size.

The base register is set up correctly to point to the entry point of the
function. The entry point has another label named REGION nnn 1
which the compiler can reference. The prologue macro is responsible for
establishing this label. The value of nnn is the function’s index number,
which is provided as the CINDEX argument to the prologue macro.
This number is unique for all functions in a compilation. Also, the base
register is named by the compiler in the value of the BASER argument
to the prologue macro.

The prologue macro is responsible for declaring the function as externally
visible (i.e. ENTRY) if needed. The value of the ENTRY argument to
the macro will be YES if the function should be externally visible.

If the ZARCH=YES parameter is specified on the prologue macro, then this
is a z/Architecture function, and the prologue is responsible for saving
64-bit registers. As well, the epilogue should restore the 64-bit registers.

If the ENB=nn parameter is specified, this function contains exception
handling information. The value nn defines the offset in the function’s
automatic variables where the start of the exception handling informa-
tion can be found. It is not recommended that C++ functions which
require exception handling be used in existing routines, because of the
complicated runtime requirements.

The prologue macro is responsible for deallocating the local stack space,
restoring the register contents to their previous values and returning to
the caller.

For re-entrant programs, DCXX also generates an invocation of the
DCCPRV macro to acquire the address of the Pseudo-Register Vec-
tor (PRV). DCCPRV accepts one argument, REG=nn, which specifies
which register should contain the address of the PRV when the macro has
been expanded. DCC will invoke the macro at the start of each function
that needs to address data in the PRV and will save the resulting value
at a location in the local stack frame. The supplied DCCPRV macro
works in conjunction with the Systems/C stack and the supplied DC-
CPRLG macro. If an alternate prologue is used, DCCPRV must be
adjusted appropriately to build re-entrant programs. If the ZARCH=YES
was specified on the prologue macro, then the generated assembler code
expects a complete 64-bit pointer for the value of the PRV.

In general, it is not possible to mix functions assembled with an alternate pro-
logue/epilogue with the objects from the Systems/C++ or Systems/C libraries.

An alternate prologue macro can be specified by using the option –fprol=XXX on
the DCXX command line. An alternate epilogue may be specify using –fepil=XXX.
An alternate PRV address macro may be specified using –fprv=XXX.

154 Systems/C++



Adding keywords to prologue/epilogue macros

In some instances, with slight modification, an existing prologue or epilogue can
function in a new manner. For example, any existing prologue/epilogue may be ad-
equate for all situations except program start-up, where a slight change is needed.
To facilitate this, the Systems/C++ compiler can add extra arguments to the pro-
logue and epilogue macros on a per-function basis, via the #pragma prolkey and
#pragma epilkey directives.

#pragma prolkey(identifier, “key-string”)

Directs the compiler to add the string “key-string” to the arguments presented to
the prologue macro for the identified function. The key-string may be any C string
constant, and thus can comprise several arguments separated by commas. A leading
comma will be provided by the compiler if needed.

#pragma epilkey(identifier, “key-string”)

Directs the compiler to add the string “key-string” to the arguments presented to
the epilogue macro for the identified function. The key-string may be any C string
constant, and thus can comprise several arguments separated by commas. A leading
comma will be provided by the compiler if needed.

Specifying an alternate base register

DCXX assumes that register 12 is the code base register for functions. However, you
can specify an alternate register for this purpose, to improve integration of DCXX-
generated assembly source into an existing program structure. The alternate base
register can be specified using the –fcode base=nn option.

The specified code base register is also passed to the prologue macro in the value of
the BASER argument.

The code base register can be any register except the frame base register. However,
the compiler will registers 0, 1, 14 and 15 for function calls. Use of registers 0, 1, 14
or 15 as the code base should be carefully employed.

Specifying an alternate frame register

DCXX assumes that register 13 will be used for addressing automatic data, local
to the function. That is, register 13 is the frame base register.

Systems/C++ 155



However, for improved interaction in some existing programs, it may be better to
choose another register as the frame register.

The –fframe base=nn option may be used to specify a different frame register for
addressing automatic data. The default Systems/C prologue and epilogue macros do
not support using an alternate frame register. Thus, proper use of the –fframe base=nn
option requires that prologue and epilogue macro implementations which support
the named frame base register be provided

The compiler will use registers 0, 1, 14 and 15 for function calls. Use of these
registers as the frame base register should be avoided.

156 Systems/C++



Using the Systems/C Library
Direct-CALL interface

The Systems/C and Systems/C++ libraries are implemented using the Systems/C++
entry and exit macros which assume a Systems/C++ environment is extant at run-
time.

The Systems/C++ environment includes items such as the local stack frame used
for automatic variables in your C++ code, the Systems/C++ run-time heap, Sys-
tems/C++ global/initialized data, I/O data blocks, etc.

Thus, in order to call a Systems/C++ function which uses the Systems/C++ entry
and exit linkage macros, this environment must be established and accessible.

For typical Systems/C++ programs, where your initial function is a C++ main()
function, the Systems/C++ library handles creation of this environment.

However, there are circumstances where there is no Systems/C++ main() function.
For example, when calling Systems/C++ routines from COBOL or directly from
assembler source in a system exit.

For this situation, Systems/C++ provides the Direct-CALL (DCALL) interface,
where a Systems/C++ function can be directly called from any environment. This
interface can be employed to either automatically create and destroy a Systems/C++
environment, or to create and re-use, then destroy, a Systems/C++ environment.

This functionality is identical to the Systems/C DCALL interface. The one caveat
is that you may want to use extern "C" functions for the DCALL entry points
because C++ symbols usually have special names in order to deal with overloading.

For more detailed information on the Systems/C++ Direct-CALL run-time envi-
ronment, consult the Systems/C C Library manual.

Systems/C++ 157



158 Systems/C++



Debugging Systems/C++
Programs

Because the output of the Systems/C++ compiler is formatted assembly source, the
debugging approaches you are familiar with for debugging assembly programs are
applicable.

Accessing symbols in a debugging session

For most mainframe debuggers, external symbols are usually readily accessible as
they have associated ESD information in the object deck and load module, although
no C++ type information is provided.

For automatic variables, the compiler on a per-function basis generates an @AUTO
DSECT which describes the variables. The @AUTO DSECT is provided at the end
of each function, and contains a description of the automatic variables allocated
in the function. By USING the frame base register, typically register 13, you can
reference this DSECT to examine or change automatic variables in your debugging
session.

The format of the @AUTO DSECT is:

@AUTO#funname DSECT
funname#varname#blocktag DS variable-description
funname#varname#blocktag DS variable-description

.

.

.

Each automatic variable has one entry in the DSECT. The entries in the DSECT
are made unique from any other @AUTO DSECTs by prefixing the function’s name,
followed by a pound character (#).

Systems/C++ 159



Furthermore, each entry is made unique from other entries in the same @AUTO
DSECT by appending a pound character (#) and a blocktag. Typically, the blocktag
is a counter value associated with the block within the C function.

The variable-description following the DS includes the size of the automatic variable,
along with some basic type information. When the C++ type can be represented
by an assembly-language DS-specification, that will be used. For those C++ types
that aren’t representable, the X’nn’ DS-specification will be used. The basic types in
the C++ language have equivalent DS specifications, and will be represented. More
complex types, such as structures, don’t have equivalent DS specifications and will
appear as X’nn’.

Forcing a dump

The ready support of direct, inline assembly makes forcing a dump a nice, quick
approach to program debugging. Simply place specific values in a register (using
register() declarations) and force an 0C1 dump. The register trace back will

contain the value you are interested in.

In the following example, the macro OhC1 is defined to generate assembly code that
will force the dump. Then, after loading the value of errno into register 2, the
macro is invoked.

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

/* Define a macro that generates inline */
/* assembly code to force an 0C1. */
#define OhC1(label,ax) __asm 2 { label dc x’00’,ax }

func()
{

if (open("MYDD",O_RDONLY,0) < 0) {
__register(2) int r2;

/* Place the value of ’errno’ in */
/* register #2. */
r2=errno;

/* Force an OC1 - the value of errno */
/* will be in R2 in the register dump. */
OhC1(labeli,x’00’);

}
}

160 Systems/C++



Compiling for Linux/390,
z/Linux and z/TPF

The Systems/C++ compiler, DCXX, supports compiling source for assembly and
execution under Linux running on 390 hardware, Linux/390, or for 64-bit z/Series
machines, z/Linux and z/TPF. This allows the programmer to use the same compiler
for both OS/390, z/OS, TPF 4.1, Linux/390, z/Linux and z/TPF with little change.

When compiling for Linux/390, z/Linux or z/TPF, Systems/C++ produces assem-
bler source suitable for assembling with the GNU GAS assembler, as. Because it
produces assembler source, many of the same features available when generating
HLASM source are available, e.g. asm, register, etc. As the generated assem-
bler source is targeted at the Linux/390, z/Linux or z/TPF assembler, any inline
assembler source inside of asm blocks similarly needs to take this into account.

However, the prologue and epilogue for functions, as well as the calling linkage
convention are different from those used with OS/390 and z/OS. Therefore the Sys-
tems/C extensions related to prologue/epilogue function do not apply when com-
piling in this environment.

In general, to generate a program for Linux/390 or z/Linux, DCXX is executed with
the –flinux option, enabling generation of as-style assembler source. For z/TPF, the
–fztpf options is used. This source is then assembled, producing an object file in
ELF format. That file can then be linked with any other Linux/390 or z/Linux
objects to produce the program.

If the –mlp64 option is specified, the resulting assembly language is targeted as 64-
bit z/Linux, and should be assembled with the z/Linux version of the as assembler.
The –mlp64 option is enabled by default for z/TPF.

The –flinux option

The –flinux option causes the compiler to generate source suitable for assembly by
the Linux/390 or z/Linux GNU assembler, as. This assembler source is very similar
to HLASM source, except that as does not support some of the more advanced

Systems/C++ 161



features of HLASM. For example, there is no USING statement, no macro prepro-
cessor, etc. Thus, the generated assembler source is a more direct representation.
For more information about the input accepted by as, see the GNU info file for as.

The –flinux option also disables those features which are not supported because of
this different assembler syntax. Using any disabled features will typically produce
a warning message and the feature will be ignored.

If the –mlp64 option is specified, the generated assembler source should be assembled
with the z/Linux version of as, creating a 64-bit ELF object. Otherwise, it should
be assembled with the Linux/390 version of as, creating a 32-bit ELF object.

The –flinux and –fztpf options enable the –fieee option, causing IEEE constants and
IEEE floating point instructions to be used for floating point arithmetic.

Using Linux/390 and z/Linux system #include files

The #include files provided with Linux/390 take advantage of many GNU exten-
sions, and assume the presence of several pre-defined macros. Furthermore, the
system header files are tailored to each release of the GNU C compiler, gcc.

Many of these extensions have been added to DCXX to support the Linux/390
and z/Linux header files. The Linux/390 and z/Linux system include files expect
pre-defined macros, which Systems/C++ provides automatically when –flinux is
specified. The –I search list should include the GNU C compiler headers in the
proper order.

To determine what should be added to the DCXX command line, run g++ with the
–v flag, where it produces the options it uses for the GNU compiler. For example:

g++ -v t.c

produces:

Reading specs from
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/specs

gcc version 2.95.2 19991024 (release)
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/cpp -lang-c -v
-D__GNUC__=2 -D__GNUC_MINOR__=95 -Dlinux -D__s390__ -Dunix
-D__ELF__ -D__linux__ -D__s390__ -D__unix__ -D__ELF__
-D__linux -D__unix -Asystem(linux) -Acpu(s390)
-Amachine(s390) -Asystem(unix) -D__CHAR_UNSIGNED__ t.c
/tmp/ccy98GUC.i
GNU CPP version 2.95.2 19991024 (release) (Linux for
S/390)

162 Systems/C++



#include "..." search starts here:
#include <...> search starts here:
/usr/include
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/../../../../s3
90-ibm-linux/include
/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/include
/usr/include
End of search list.

The –I options used under normal Linux/390 compiles become clear.

The equivalent DCXX command line under Linux/390 would be:

dcxx -flinux \
-I/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/../../../../s390-ibm-li
nux/include \
-I/usr/lib/gcc-lib/s390-ibm-linux/2.95.2/include \
-I/usr/include \
t.c

The path to the Systems/C++ C++ library #include files should also be specified.
For example, if the Systems/C++ C++ library files are in

/usr/local/dignus/include/libcxx
then you would add

-I/usr/local/dignus/include/libcxx
as the first #include search path entry.

It is suggested that the command above be placed in a shell script at your installa-
tion, to make compiling Linux/390 and z/Linux programs easier.

Furthermore, note that the Linux/390 and z/Linux system include files can be copied
to any of the Systems/C++ supported platforms. Doing so enables Systems/C++
to cross-compile Linux/390 source on other platforms.

Using z/TPF #include files

For z/TPF builds, IBM has modified the include files to be automatically processed
with DCXX. No changes are required.

Assembling Linux/390, z/Linux or z/TPF assembler source

Systems/C++ generated assembler source may be assembled directly with the Linux/390
or z/Linux versions of as as appropriate. The source can also be passed to the gcc
compiler driver for assembly. The gcc compiler driver will invoke as to accomplish
the assembly.

Systems/C++ 163



Using the Linux/390 or z/Linux as command

When DCXX is executed with the –flinux or –fztpf options, the generated assembler
source is formatted to be assembled with the Linux/390 and z/Linux assembler, as.
For detailed information regarding the as assembler; refer to the manual page on
the Linux/390 or z/Linux system.

Note that if the –mlp64 or –fztpf option is specified, the 64-bit z/Linux version of
as should be used.

Some helpful options are:

–a Turn on assembly listings. Adding l enables an assembly listing, adding
s enables a symbol listing. Adding =filename will direct the listing to a
particular filename.

–o file Direct the assembler to write the object to file.

–v Announce the assembler version.

For example, if the generated output from DCC was in the file myprog.s, then the
following command on Linux/390 and z/Linux will assemble the file, place a listing
in myprog.lst and produce the object file myprog.o:

as -als=myprog.lst -o myprog.o myprog.s

Using the gcc driver to assemble

As an alternative to directly invoking the assembler, the GNU compiler driver,
gcc, can be used to assemble DCC-generated assembler source. If the generated
assembler source file ends in “.s”, gcc will invoke the assembler for this file to
create a “.o” object file. For example, the myprog.s assembler source could be
assembled with:

gcc -c myprog.s

The –c option indicates that linking should not be performed. This will execute the
assembler and produce the file myprog.o.

164 Systems/C++



Linking on Linux/390 and z/Linux

Once the DCXX-generated assembler source has been assembled, it can be linked as
any other object is linked on Linux/390 or z/Linux. This is typically accomplished
with the gcc compiler driver. The gcc compiler driver will invoke the Linux/390 or
z/Linux linker, ld, passing the name of the object file, along with any library files
which may be needed.

For more information regarding the ld linker or the gcc compiler driver, consult the
Linux/390 or z/Linux on-line manual pages with the commands:

man ld

man gcc

For example, if the DCXX-generated assembler source myprog.s had been assem-
bled into myprog.o, then linking this on Linux/390 or z/Linux to produce myprog
is simply:

gcc -o myprog myprog.o

At this point, myprog is ready to run.

Systems/C++ 165



Example Linux/390 compile and link

By way of example, consider the following simple C++ source. For this example, we
do not include any Linux/390 system headers, which simplifies the DCC command
line:

extern "C" int printf(const char *,...);

int main()
{

printf("Hi from Linux/390!\n");
}

If this C++ source is in the file ./mytest.c on a Linux/390 host, then the following
commands will compile, assemble and link the program, producing the executable
mytest:

dcxx -flinux -omytest.s mytest.c
as -al=mytest.lst -o mytest.o mytest.s
gcc -o mytest mytest.o

Notice also that on the as step, a listing file was specified — mytest.lst. If no
assembler listing is needed, then the as step can be incorporated into the linking
step, and the commands simply become:

dcxx -flinux -omytest.s mytest.c
gcc -o mytest mytest.s

Using DCXX for z/TPF

The Systems/C++ compiler can be used to write programs for z/TPF, by specifying
the –fztpf option.

When –fztpf is specified, the compiler generates as-style assembly source and should
be assembled with the GNU GAS assembler for 64-bit Linux.

The resulting object file is an ELF object file that can be linked as normal in a
z/TPF environment.

The normal extensions available in Systems/C++ are also available in a z/TPF en-
vironment; including in-line assembly, various #pragmas and other language features
that offer improved compatibility with TPF 4.1 compiles.

166 Systems/C++



Systems/C++ can also produce a compiler listing similar to the one used in a TPF
4.1 environment.

As of PUT 07, the IBM maketpf utility supports the use of DCXX for z/TPF, no
changes to maketpf should be required. Furthermore, the maketpf utility invokes
the tpf-dcxx script to accomplish the compile and link, so no direct invocation of
as is needed. DCXX is fully integrated into maketpf and its use is supported by
IBM.

Consult the IBM z/TPF documentation for more information on maketpf and on
using DCXX to build programs for z/TPF.

Using DCXX for Linux on other hosts

DCXX is supported on many different platforms. On each of these, the compiler
can be employed to generate Linux/390 or z/Linux assembler source by including
the –flinux or –fztpf option.

To do so, the Linux/390,z/Linux or z/TPF system include files need to be available
to the host platform for reference there, either via network access or a copy. Once
the system include files are available, DCXX can be employed just as it would be
on a native Linux/390 or z/Linux host.

Furthermore, it is possible to construct a version of the GNU assembler, as, which
can assemble the DCXX-generated assembler source on many UNIX platforms. Or,
the GNU assembler can be invoked natively on a Linux/390 or z/Linux platform by
using network facilities such as rexec.

For example, it would be possible to generate Linux/390 assembler source on an
OS/390 host, then use the OS/390 REXEC program to invoke the Linux/390 assembler
to assemble the source.

Similarly, it is possible to construct a version of the GNU linker, ld, which will
execute on many UNIX platforms to link the objects to produce an executable.

For more information regarding the GNU as and ld tools, and how to configure and
build them on alternative hosts, refer to your Linux/390 or z/Linux documentation,
or see http://www.gnu.org.

Systems/C++ 167



168 Systems/C++



Systems/C C Library

The Systems/C C library provides the ANSI standard functions, as well as several
extensions which aide in the porting of other programs to the mainframe.

For detailed information on the run-time environment, consult the Systems/C C
Library manual.

Systems/C++ 169



170 Systems/C++



Systems/C++ C++ Library

The Systems/C++ C++ library provides the ANSI standard functions and the
Standard Template Library, as well as several extensions which aide in the porting
of other programs to the mainframe.

For detailed information on the run-time environment, consult the Systems/C++
C++ Library manual.

Note that both libcxx and libstdcxx changed extensively at version 2.10. If linking
against either of these libraries, it is important that all objects were compiled with
a version of DCXX newer than 2.10.

Systems/C++ 171



172 Systems/C++



License Information File

DCXX consults the license information file each time it is executed. Information
in the file includes the licensee name, expiration, license key, and other pertinent
information.

This file must be accessible or the compiler will not execute.

On UNIX, Linux and Windows host platforms, the file is named dignus.inf and is
found in the same directory as the dcxx executable. The dignus.inf file is a text
file which can be edited by any text editor. However, changing the expiration date,
licensee, options or host platform definitions will invalidate your license.

On OS/390 and z/OS, the license information file is named DIGNUS and is found in
the same load module PDS as the DCXX executable module. DIGNUS is in load
module format, and is generated from assembly language source. To make changes in
the license information, the assembly language source must be changed, assembled
and link-edited to produce the the DIGNUS load module. However, changing the
expiration date, licensee, options or host platform definitions will invalidate your
license.

As well as license information, the file can also specify the location of the Sys-
tem/C++ system include files. These are the files which are specified in angle
brackets in C++ preprocessor #include directive, e.g:

#include <stdio.h>

The “System Include” statement is used to specify the location of the System/C
and Systems/C++ library header files.

On UNIX, Linux and Windows host platforms, this is typically the include subdi-
rectory of the Systems/C++ installation, e.g.:

System Include=sysc directory/include

On OS/390 and z/OS, this is base name of the PDSs which constitute the Systems/C
and Systems/C++ library header files. This can be specified in the dignus.asm file
as:

Systems/C++ 173



DC C’System Include=//DSN:sysc prefix.INCLUDE’
DC X’15’
DC X’0’

The special keyword “LICENSE” at the beginning of the path is expanded to the
path in which DCC found the license file itself. For example, if the license file is in
C:\DIGNUS\BIN, and you had the following line in your license file:

System Include=LICENSE\ ..\ include

then DCC would look in C:\DIGNUS\INCLUDE for the headers.

Your dignus.inf, or dignus.asm assembly language source to create DIGNUS, is
provided separately from the installation materials. Editing this file is part of the
installation process, and is described further there.

If you have more than one licensed product from Dignus, LLC, you can simply
concatenate the license text together into one dignus.asm or dignus.inf file.

174 Systems/C++



Run-time support for exceptions

DCXX has several distinct modes for implementing exceptions. When –flinux
or –fztpf is specified, it generates exception calls and data structures which are
compatible with those generated by g++ (version 4.1.2), using GNU libstdc++.
When –fc370 is specified, it generates exception calls and data structures which
are compatible with those used by the IBM C++ compiler, using the Language
Environment runtime libraries. When using our own Systems/C++ runtime library,
we handle exceptions as described in the following sections.

Systems/C++-style exceptions

Exception handling in DCXX has two main components: per-function tables de-
tailing the current exception cleanup state and some helper functions in the runtime
library (such as the provided libcxx). The exception ABI was re-designed in the
2.10 release in order to provide for zero execution overhead if no exceptions are
thrown. As a result, any programs linked with libcxx version 2.10 or above must
have been compiled with DCXX version 2.10 or above.

When DCXX encounters a function which needs exception handling (either for
destruction of local data or for a catch statement), it adds a parameter to the
DCCPRLG macro, EHB=label. The provided label indicates the beginning of a constant
exception handling table.

Exception Handling Table

In 24/31-bit mode, the exception handling table consists of a series of entries of the
following format:

Offset Bytes Description
0 4 offset to start of call region
4 4 offset to end of call region
8 4 offset to catch handler

Systems/C++ 175



For 64-bit mode, the exception handling table format is:

Offset Bytes Description
0 8 offset to start of call region
8 8 offset to end of call region
16 8 offset to catch handler

In both tables, the addresses are encoded as an offset from the start of the function.
The table is terminated by a 0 value in the first field.

During stack unwinding, if it is unwinding a function that does not have an exception
handling table, then it unwinds the stack without incident. If there is an exception
handling table and the call (i.e., BALR) within that function was within a call region,
then the corresponding catch handler is branched to if it is non-zero. If the catch
handler offset is zero then it simply unwinds the stack. However, if there is an
exception handling table but none of the entries match the call region, then stack
unwinding calls std::terminate().

The catch handler block itself will typically either attempt to catch the exception
( eh begin catch()), or call a destructor then re-throw ( eh resume()).

Runtime support

DCXX generates calls to functions in the C++ language support library (libcxx
to implement runtime support for exceptions:

void * cxa allocate exception(unsigned long size)
When a throw statement is processed, the C++ compiler generates a call
to cxa allocate exception() to allocate the memory needed to store the
thrown object. A special exception-aware alternative to malloc() or new
is necessary because it would be inappropriate to use an interface which
may possibly throw an exception in the process of throwing an exception.
If malloc() cannot throw an exception then cxa allocate exception()
can use malloc(). If malloc() fails then cxa allocate exception() must
call std::terminate() rather than returning NULL. Also, in the Dignus C++
runtime library, cxa allocate exception() allocates an extra header be-
fore the returned pointer which is used internally for tracking uncaught ex-
ceptions.

Any pointer returned from cxa allocate exception() must be passed to
either cxa throw() or cxa free exception().

void cxa free exception(void *exc)
Releases the memory allocated by cxa allocate exception().

void cxa throw(void *exception, void *exc type, void (*dtor)(void*))
cxa throw() unwinds the stack when an exception is thrown until the top

of stack is reached (in which case std::terminate() is called) or until a

176 Systems/C++



catch block consumes the exception. It is provided with a pointer to the
exception that is thrown, a pointer with a unique value specific to the type
of the thrown exception (a type info record), and a function pointer for the
destructor to clean up the exception when it’s handled. As the stack is un-
wound, the exception handling tables are processed in order. cxa throw()
must save the thrown object and the thrown exception record so that the
other exception functions can access them.

void * eh begin catch(void *type)
At the beginning of a catch block, DCXX generates a call to
eh begin catch() to determine if the thrown object type matches the

catch type. For catch (...) (which matches everything), type holds NULL
and eh begin catch() immediately returns the pointer to the thrown ob-
ject. Otherwise, eh begin catch() must examine the type info to deter-
mine if the types match (possibly taking base class casts into account) and
then compute the object address and return it to the caller. If the type
doesn’t match, the value NULL is returned.

If eh begin catch() returns non-NULL then the catch handler must ensure
that cxa end catch() is ultimately called.

void cxa end catch(void)
Once a catch block completes, either successfully or with a re-throw, a call
to cxa end catch() is generated to finish the process. If there are no other
references to the destructor (from re-throw or through std::exception ptr,
then it calls the destructor provided to the cxa throw() call and
cxa free exception(). Then it returns to the caller.

void eh rethrow explicit(void)
If the user explicitly coded a “throw;” to re-throw the exception then DCXX
generates a call to eh rethrow explicit(), which resumes the stack un-
winding. Note that cxa end catch() must still be called, usually while the
stack is being unwound for the rethrown exception.

void eh resume(void)
DCXX generates a call to eh resume() to resume stack unwinding after
a destructor call.

In addition, the C++ standard library (libstdcxx) calls the following run-time
support functions to implement std::exception ptr:

void cxa increment exception refcount(void *exc)
Increment the reference count to allow the run-time support functions to
know about external references to an exception. The exception’s destructor
will not be called until the reference count reaches zero.

void cxa decrement exception refcount(void *exc)
Decrement the count of external references to the provided exception.

Systems/C++ 177



void * cxa current primary exception(void)
Return the exception that is currently being caught, and increment its refer-
ence count.

void cxa rethrow primary exception(void *exc)
Re-throw an exception which was returned from
cxa current primary exception(). Note that the original
eh begin catch() call still needs to be completed with a cxa end catch()

call during unwinding.

int cxa uncaught exception(void)
Returns non-zero if there are any uncaught exceptions.

178 Systems/C++



ASCII/EBCDIC Translation
Table

The Systems/C compiler and utilities use the following tables to translate characters
between ASCII and EBCDIC. These tables represent the mapping of the IBM Code
Page 1047 (IBM1047) to ISO LATIN-1.

However, this is not the official IBM1047 mapping. The official mapping maps
EBCDIC X’15’ to LINEFEED X’85’ and maps EBCDIC X’25’ to NEWLINE X’0A’.
This is reversed from their traditional mappings. Some vendors use the traditional
mapping and some use the official mapping.

The Dignus compilers and utilities use the tradtitional mappings.

ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

Systems/C++ 179



EBCDIC to ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C

5 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE

B AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

180 Systems/C++


	How to use this book
	Systems/C++ Overview
	Implementation Definitions
	Implementation limits
	Basic Data Types and Alignments
	Return values

	C++ Language Features
	1998 ANSI Standard C++
	2011 ANSI Standard C++
	2014 ANSI Standard C++
	2017 ANSI Standard C++
	C++ language extensions accepted
	Namespace Support
	Dependent Name Processing
	Lookup Using the Reference Context
	Argument-Dependent Lookup

	Template Instantiation
	__int8, __int16, __int32, __int64

	Compiling, Linking and Running Programs
	Running DCXX
	In OS/390 and z/OS
	In Windows
	In the UNIX/LINUX environment

	Include File Processing
	On OS/390 or z/OS
	On UNIX, Linux and Windows
	Header filename mapping ($$HDRMAP)

	Description of options
	Detailed description of the options
	The -D option (define a macro)
	The -I option (specify additional locations to look for included files)
	The -iquote dir option (Add dir to the list of directories to examine for local include files)
	The -isystem dir option (Add dir to the list of system include directories)
	The -idirafter dir option (Add dir to the list of directories to search after the system include directories)
	The -Sdir option (Add dir to the list of directories to examine for include files, honoring IBM's SEARCH semantics)
	The -ofile option (specify the name of the generated output file)
	The -E option (preprocess only)
	The -femitdefs option (include #define values in preprocessor output)
	The -M[=filename] option (generate a source dependence list)
	The -fdep[=filename] option (generate a source dependence list during regular compilation)
	The -g option (debuggable code)
	The -g0 option (Disable debuggable code and debugging information)
	The -gdwarf option (generate DWARF debugging information)
	The -gstabs option (generate STABS debugging information)
	The -gisd option (generate ISD debugging information)
	The -fansi_bitfield_packing/-fno_ansi_bitfield_packing options (ANSI rules for bitfield allocation)
	The -fc370=version option (specify IBM C++ compatibility)
	The -fexportall option (Provide DLL definitions for data/functions)
	The -fdll=cba and -fdll=nocba options (Enable/disable LE DLL(CALLBACKANY) support)
	The -fep=name option (specify entry point)
	The -fprol=macro option (specify alternate prologue macro)
	The -fprv=macro option (specify alternate PRV address macro)
	The -fepil=macro option (specify alternate epilogue macro)
	The -lnameaddr and -fno_lnameaddr macros (Enable or disable generation of Logical Name Address info)
	The -fopts[=macro] option (Request interesting options noted at top of generated assembly)
	The -fendmacro[=text] option (Specify text to appear before the END statement)
	The -finstrument_functions option (Request function beginning /ending instrumentation)
	The -fcode_base=N option (specify register to use for addressing code)
	The -fframe_base=N option (specify register to use for addressing automatic data)
	The -freserve_reg=N option (reserve register #N)
	The -fwarn_disable=N[,N,N-M,...] option (disable emission of warning(s))
	The -fwarn_enable=N[,N,N-M,...] option (reenable disabled warning(s))
	The -fwarn_promote=N[,N,N-M,...] option (promote warning(s) to error status)
	The -ftrim option (remove trailing blanks from source)
	The -faddh option (add ``.h'' to #include names)
	The -flowerh option (convert #include names to lower case)
	The -fnosearchlocal option (don't look in ``local'' directories)
	The -fpreinclude=filename option (#include the named file before compiling the C++ source file)
	The -flisting[=filename] option (generate a listing)
	The -fvtable_listing and -fno_vtable_listing options ((enable/disable virtual function table information to listing)
	The -fpagesize=n option (set the listing page size to n lines)
	The -fshowinc and -fno_showinc options (enable/disable inc luding source from #include files in listing)
	The -fstructmap and -fno_structmap options (enable/disable including struct layout information in the listing)
	The -fstructmaphex and -fno_structmaphex options (structure layout information should/shouldn't be displayed in hex)
	The -frent option (generate re-entrant code)
	The -fmaxerrcount=N option (limit the number of reported errors)
	The -Uname option (undefine predefined #define values)
	The -fincstripdir option (remove directory components from #include names)
	The -fincstripsuf option (conditionally remove suffixes from #include names)
	The -fincrepsuf option (conditionally replace suffixes from #include names)
	The -fmargins[=m,n] option (specify margins for source lines)
	The -fmesg=style option (specify message style)
	The -fasciiout option (char and string constants are ASCII)
	The -fdollar option (alloc dollar sign character in identifier s)
	The -fwchar_ucs option (indicate that wide character constants are UCS-2 or UCS-4.)
	The -fwchar=n option (specify the size of wchar_t)
	The -fsname=name option (specify section names)
	The -fnosname option (allow PLINK to choose unique section names)
	The -fsnameprefix=char option (specify section name prefix)
	The -fieee option (BFP format floating point values and constants)
	The -fmrc/-fnomrc options (mainframe or UNIX-style return codes)
	The -fpatch/-fno_patch options (generate a patch area)
	The -fpatchmul=n option (alter the size of the patch area)
	The -flinux option (enable Linux/390 and z/Linux code generation)
	The -fvisibility=setting option (set ELF object symbol visibility)
	The -fsigned_char/-funsigned_char options (Control if char is signed or unsigned by default)
	The -fsuppress_vtbl option (suppress generation of C++ vtable information)
	The -fforce_vtbl option (force generation of C++ vtable information)
	The -finstantiate=mode option (set the template instantiation mode)
	The -fdistinct_template_signatures/-fno_distinct_template_signatures options (enable/disable distinct template signatures)
	The -fimplicit_include/-fno_implicit_include options (enable/disable implicit inclusion for template libraries)
	The -ftempinc[=directory]/-fno_tempinc options (enable/disable template instantiation method
	The -fnonstd_qualifier_deduction/-fno_nonstd_qualifier_deduction options (enable/disable non-standard qualifier deduction)
	The -guiding_decls/-fno_guiding_decls ioptions (Imply template instantation with a specific declaration)
	The -fexceptions/-fno_exceptions options (enable/disable support for C++ exceptions)
	The -frtti/-fno_rtti options (enable/disable C++ Run-Time Type Info)
	The -farray_new_and_delete/-fno_array_new_and_delete options (enable/disable new[] and delete[])
	The -fexplicit/-fno_explicit options (enable/disable explicit keyword)
	The -fnamespaces/-fno_namespaces options (enable/disable namespace support)
	The -fold_for_init option (variables in for() inits follow pre-ANSI semantics)
	The -fnew_for_init option (variables in for() inits follow ANSI semantics)
	The -fold_specializations/-fno_old_specializations options (enable/disable old-style template specializations)
	The -fextern_inline/-fno_extern_inline options (enable/disable extern inline)
	The -fshort_lifetime_temps/-flong_lifetime_temps options (enable/disable long lifetime temporaries)
	The -fbool/-fno_bool options (enable/disable bool support)
	The -fwchar_t_keyword/-fno_wchar_t_keyword options (enable/disable wchar_t support)
	The -ftypename/-fno_typename options (enable/disable typename support)
	The -fimplicit_typename/-fno_implicit_typename options (enable/disable implicit template param type determination)
	The -fdep_name/-fno_dep_name options (enable/disable dependent name processing)
	The -fparse_templates/-fno_parse_templates options (enable/disable parsing templates)
	The -fspecial_subscript_cost/-fno_special_subscript_cost options (enable/disable special operator costs)
	The -falternative_tokens/-fno_alternative_tokens options (enable/disable C++ alternative tokens)
	The -fenum_overloading/-fno_enum_overloading options (enable/disable enum overloading)
	The -fconst_string_literals/-fno_const_string_literals options (enable/disable const strings)
	The -fimplicit_extern_c_type_conversion/-fno_implicit_extern_c_type_conversion options (Allow implicit conversions between C and C++ functions)
	The -fclass_name_injection/-fno_class_name_injection options (enable/disable class name injection)
	The -farg_dependent_lookup/-fno_arg_dependent_lookup options (enable/disable arg-dependent lookup)
	The -ffriend_injection/-fno_friend_injection options (enable/disable friend namespace injection)
	The -flate_tiebreaker option (avoid the use of qualifiers in overload resolution)
	The -fearly_tiebreaker option (use qualifiers in overload resolution)
	The -fnonstd_using_decl/-fno_nonstd_using_decl options (enable/disable non-standard using)
	The -fvariadic_macros/-fno_variadic_macros options (enable/disable C99 variadic macros)
	The -fextended_variadic_macros/-fno_extended_variadic_macros options (enable/disable GCC variadic macros)
	The -fbase_assign_op_is_default/-fno_base_assign_op_is_default options (enable/disable copy assignment from base)
	The -fignore_std/-fno_ignore_std options (enable/disable std namespace special treatment)
	The -version option (print the compiler version number on STDOUT and exit)
	The -famode=val option (specify runtime addressing mode)
	The -march=zN option (enable z/Architecture compilation)
	The -march=esa390 and -march=esa390z options (enable ESA/390 compilation)
	The -milp32 option (32-bit compilation)
	The -mlp64 option (64-bit compilation)
	The -mfp16 and -mfp4 options (enable/disable use of extended FP registers)
	The -mlong-double-128 and -mlong-double-64 options (enable/disable 128-bit long double characteristics)
	The -mmvcle and -mno-mvcle options (enable/disable use of the MVCLE/CLCLE instruction)
	The -mdistinct-operands and -mno-distinct-operands options (enable/disable use of distinct-operands facility instructions)
	The -mextended-immediate and -mno-extended-immediate options (enable/disable use of extended-immediate facility instructions)
	The -mload-store-on-condition and -mno-load-store-on-condition options (enable/disable use of load-store-on-condition facility instructions)
	The -mhfp-multiply-add and -mno-hfp-multiply-add options (enable/disable use of HFP multiply-and-add facility instructions)
	The -mlong-displacement and -mno-long-displacement options (enable/disable use of long-displacement facility instructions)
	The -mgeneral-instructions-extension and -mno-general-instructions-extension options (enable/disable use of general-instructions-extension facility instructions)
	The -mhigh-word-facility and -mno-high-word-facility options (enable/disable use of high-word facility instructions)
	The -mhfp-extensions and -mno-hfp-extensions options (enable/disable use of HFP extensions facility instructions)
	The -finline[=x[:y:z]] and -fnoinline options (Control inlining optimization)
	The -O[n] option (Set optimization level)
	The -fasmcomm=mode option (control the comments in the assembly output)
	The -asmlnno option (Include line numbers in C source comments in generated assembly)
	The -fmin_lm_reg=val option (Set the minimum number of registers in one LM instruction)
	The -fmin_stm_reg=val option (Set the minimum number of registers in one STM instruction)
	The -fflex option (Enable FLEX/ES-specific optimizations)
	The -frsa[=size] option (Specify the amount of space the compiler reserves for the Register Save Area)
	The -fpack=val option (Specify a default maximum structure alignment)
	The -fpic option (Generate position independent code, small GOT)
	The -fPIC option (Generate position independent code for Linux & z/TPF, large GOT)
	The -ffpremote/-ffplocal options (function pointers are remote/local)
	The -fxplink option (Use eXtra Performance Linkage)
	The -fc370_extended option (Enable C/370 LANGLVL(EXTENDED) compatibility mode)
	The -fuser_sys_hdrmap option (Use user $$HDRMAP for system #includes)
	The -fevents=filename option (Emit an IBM-compatible events listing)
	The -fnamemangling=mode option (Select the name mangling mode to use for IBM compatibility)
	The -fenum=val option (Specify default enumeration size)
	The -ftest[=name] option (Enable a separate test csect)
	The -fprolkey=key option (Append a global prologue key)
	The -fcommon and -fnocommon options (Enable/disable common linkage for uninitialized globals)
	The -fsave_dsa_over_call/-fno_save_dsa_over_call options (Control if DSA bytes are saved and restored over alternate linkage call)
	The -fdfe and -fnodfe options (Enable/disable dead function elimination.)
	The -fmapat and -fnomapat options (Enable/disable mapping '@' to '_' in external symbol names)
	The -fat option (Support @-operator in expressions)
	The -fctrlz_is_eof and -fno_ctrlz_is_eof options (Enable/disable treating control-Z as an EOF character)
	The -fpermissive_friend and -fno_permissive_friend options (Enable/disable friend declarations on private members)
	The -ffnio/-fno_fnio options (enable/disable function names in objects for debugging)
	The -fhide_skipped/-fshow_skipped options (enable/disable omission of preprocessor-skipped lines in listing)
	The -fsigned_bitfields and -funsigned_bitfields options (set default signedness of bitfields with bare types)
	The -v option (print version information)
	The -fsched_inst, -fsched_inst2 and -fno_sched_inst options (control the behavior of the instruction scheduler)
	The -fxref and -fno_xref options (enable/disable cross-reference listing
	The -frestrict and -fno_restrict options (enable/disable C99-style restrict keyword)
	The -fcpp98 option (specify only C++98 will be accepted)
	The -fcpp11 option (enable support for C++11 language features)
	The -fcpp14 option (enable support for C++14 language features)
	The -fcpp17 option (enable support for C++17 language features)
	The -funrestricted_unions and -fno_unrestricted_unions options (Enable/disable the C++11 unrestricted unions feature)
	The -fimplicit_noexcept and -fno_implicit_noexcept options (Enable/disable the implicit C++11 exception specifications)
	The -fstatic_anon_names and -fno_static_anon_names options (Enable/disable forcing members of the unnamed namespace to static)
	The -fsource_enc=utf8 and -fsource_enc=ascii options (Select source character encoding)
	The -fdwarf_extern and -fno_dwarf_extern options (enable/disable generation of DWARF data for extern variables)

	Assembling the output
	Using HLASM
	Using Systems/ASM

	Linking Assembled Objects
	A note on re-entrant (RENT) programs
	Using PLINK
	Other useful utilities
	GOFF2XSD -- convert GOFF format objects to XSD format

	Linking programs on z/OS and OS/390
	Running programs on z/OS and OS/390

	DCXX Advanced Features and C++ Extensions
	Predefined macros
	__attribute__
	constructor/destructor attributes
	packed attribute
	mode attribute
	weak attribute
	deprecated attribute
	visibility attribute

	__FUNCTION__
	The __rent and __norent qualifiers
	__bit_sizeof and __bit_offsetof operators
	Inline Assembly language support
	__register(nn) -- Type specifier.
	__asm [n] ... -- Inline assembly source
	__asm(``...'':output:input:clobber) -- GCC-style inline assembly source

	The @ operator
	__asm__(``name'') qualifier on function declarations
	__builtin functions
	__builtin_alloca
	__builtin_bswap16
	__builtin_bswap32
	__builtin_bswap64
	__builtin_prefetch
	__builtin_memcpy
	__builtin_memset
	__builtin_memcmp
	__builtin_strcpy
	__builtin_strlen
	__builtin_strcmp
	__builtin_strcat
	__builtin_strchr
	__builtin_strrchr
	__builtin_strncat
	__builtin_strncmp
	__builtin_strncpy
	__builtin_strpbrk
	__builtin_fabs
	__builtin_fabsf
	__builtin_fabsl
	__builtin_abs
	__builtin_labs
	__builtin_popcount
	__builtin_popcountl
	__builtin_popcountll
	__builtin_frexp
	__builtin_frexpf
	__builtin_frexpl
	__builtin_huge_val
	__builtin_huge_valf
	__builtin_huge_vall
	__builtin_inf
	__builtin_inff
	__builtin_infl
	__builtin_nan
	__builtin_nanf
	__builtin_nanl
	__builtin_nans
	__builtin_nansf
	__builtin_nansl

	__atomic functions
	__atomic_load_n
	__atomic_load
	__atomic_store_n
	__atomic_store
	__atomic_exchange_n
	__atomic_exchange
	__atomic_compare_exchange_n
	__atomic_compare_exchange
	__atomic_OP_fetch
	__atomic_fetch_OP
	__atomic_test_and_set
	__atomic_clear
	__atomic_..._fence
	__atomic_..._lock_free

	#pragma compiler directives
	#pragma options(opt[,opt]...)
	#pragma prolkey(identifier, ``key'')
	#pragma epilkey(identifier, ``key'')
	#pragma map(identifier, ``name'')
	#pragma weakalias(identifier, ``name'')
	#pragma noinline(identifier)
	#pragma error ``text''
	#pragma warning ``text''
	#pragma eject
	#pragma page(n)
	#pragma pagesize(n)
	#pragma showinc
	#pragma noshowinc
	#pragma pack(n)
	#pragma weak(identifier)
	#pragma ident ``str''
	#pragma comment(user, ``str'')
	#pragma enum(enum_size)
	#pragma csect(section, ``name'')

	extern ``ALIGN4''
	extern ``OS''
	extern ``PLI''
	64-bit arithmetic -- long long
	C preprocessor extensions
	#warning
	#include_next
	#ident

	Remote function pointers
	Special ``built-in'' implementations for common C library functions.

	Programming for z/Architecture
	z/Architecture instructions
	64-bit z/Architecture programming model
	Parameter passing and return values.
	AMODE and address calculations
	__ptr64 qualifier
	__ptr31 qualifier
	Systems/C++ z/Architecture library

	Programming for OpenEdition
	Programming for MVS 3.8
	IBM C++ Compatibility Mode
	Requirements
	How Systems/C++ differs from IBM C++
	Differences from Systems/C++
	The -fansi_bitfield_packing option
	Assembling with Systems/ASM assembler
	Pre-Linking
	Linking
	Debugging
	Example

	Customizing DCXX-generated Assembly Source
	Specifying alternate Entry/Exit macros
	Adding keywords to prologue/epilogue macros
	#pragma prolkey(identifier, ``key-string'')
	#pragma epilkey(identifier, ``key-string'')

	Specifying an alternate base register
	Specifying an alternate frame register

	Using the Systems/C Library Direct-CALL interface
	Debugging Systems/C++ Programs
	Accessing symbols in a debugging session
	Forcing a dump

	Compiling for Linux/390, z/Linux and z/TPF
	The -flinux option
	Using Linux/390 and z/Linux system #include files
	Using z/TPF #include files
	Assembling Linux/390, z/Linux or z/TPF assembler source
	Using the Linux/390 or z/Linux as command
	Using the gcc driver to assemble

	Linking on Linux/390 and z/Linux
	Example Linux/390 compile and link
	Using DCXX for z/TPF
	Using DCXX for Linux on other hosts

	Systems/C C Library
	Systems/C++ C++ Library
	License Information File
	Run-time support for exceptions
	Systems/C++-style exceptions
	Exception Handling Table
	Runtime support


	ASCII/EBCDIC Translation Table

