
Systems/DBG Debugger
Version 2.25

Copyright c© 2020, Dignus, LLC

Systems/DBG Debugger
Version 2.25

i

Copyright c© 2020 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

ii

Contents

How To Use This Book 1

Systems/DBG Overview 3

DDBG User Interface 5
Initiating DDBG . 5
DDBG options . 5
DDBG commands . 5

backtrace - display runtime stack information 6
break - set a break point . 6
condition - add a conditional test to a break point 7
continue - continue program execution 7
delete - delete an existing breakpoint or display items 7
disable - disable a list of breakpoints or display items 8
disassemble - disassemble program memory 8
display - auto-display expressions . 8
down - move earlier in the stack frame execution 9
enable - enable a list of breakpoints or display items 9
file - name a program to debug . 9
help - print out help on DDBG commands 10
info - provide machine and debugger state informtion 10
list - list program source . 10
next - step one source line, step over a function call 11
nexti - step one machine instruction, step over a call 11
print - display expression once . 11
quit - exit the debugger . 11
run - run the program . 12
set - set a target to a value . 12
shell - execute shell command . 12
step - step one source line . 13
stepi - step one machine instruction 13
up - move later in the stack frame execution 13
x - examine memory . 13
whatis - display the type of an expression 14

DDBG expressions . 14

Systems/DBG iii

Pre-defined names . 15
Arithmetic Constants . 15
Expressions . 15

DDBG kernel 17
Initiating the kernel on z/OS . 17

Initiating the kernel under TSO . 17
Initiating the kernel under JCL . 18
Initiating the kernel under OpenEdition 18

TCP/IP connection . 19
Kernel options . 19

ASCII/EBCDIC Translation Table 21

iv

How To Use This Book

This book describes the Systems/DBG debugger, DDBG. DDBG is used to debug
assembly, C and C++ programms running on z/OS. This book describes how to run
DDBG, and use it to debug z/OS programs.

To learn more about the Systems/ASM assembler, refer to the Systems/ASM man-
ual.

To learn more about the Systems/C compiler, refer to the Systems/C Compiler,
Systems/C Utilities and Systems/C Library manuals.

To learn more about the Systems/C++ compiler, refer to the Systems/C++ Com-
piler and Systems/C++ Library manual.

For further information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/DBG 1

The Systems/DBG Debugger

DDBG

2 Systems/DBG

Systems/DBG Overview

The Dignus Systems/DBG Debugger, DDBG, is a debugger for the 390 and zSeries
architectures executing the z/OS operating system. It supports debugging Dignus
Systems/C and Systems/C++ programs as well as basic assembly language pro-
grams.

DDBG is architected in two pieces; the debugger “kernel” running remotely on
z/OS (DDBGKERN), and a debugger user interface (DDBG) running locally.

The “kernel” uses TCP/IP to communicate with the user interface.

To begin a debugging session, the user initiates the DDBG command on the work-
station. DDBG then displays the TCP/IP name and the selected port number the
kernel will use to connect.

The kernel DDBGKERN is then started on the mainframe. This can be done in
TSO or BATCH JCL, or under OpenEdition. The options on the DDBGKERN
command specify the host name and port number for connecting back to the DDBG
program.

The programmer then interacts with the DDBG command line interface to initiate
the target program (the program to be debugged), examine memory, execute, single
step, etc.

Systems/DBG 3

4 Systems/DBG

DDBG User Interface

Initiating DDBG

To start the DDBG user interface, simply issue the ddbg command in a terminal
or command window.

DDBG will then display a banner and the TCP/IP connection information and
wait for a connection from the DDBGKERN program on the mainframe. The
TCP/IP connection information includes the host name and port number for the
DDBGKERN program to use to connect to the DDBG program.

You can then start DDBGKERN via either TSO, BATCH or OpenEdition on the
mainframe, specifying the TCP/IP connection information.

DDBG options

–nportnumber Specify a particular port number for a waiting connection from
DDBGKERN. If –n is not specified, then DDBG requests an
available port number from the operating system.

–kscript On UNIX-style systems, script is a shell script that is executed to
remotely initiate the debugging kernel DDBGKERN on z/OS. For
example, the script could remotely execute the DDBG command
and pass the TCP/IP connection information.

DDBG commands

The DDBG debugger has commands that allow you to examine memory, examine
the values of registers, set breakpoints, initiate a program to debug, pass arguments
to a program, etc.. It also includes an expression parser and evaluation engine to
allow for flexibility in specifying arguments to the various commands.

Systems/DBG 5

backtrace - display runtime stack information

The backtrace command examines the program and displays the current stack
frame information. The stack frame information is the stack of invoked function
frames, as each function was entered.

Currently DDBG examines the instructions at the start of the current function
to look for recognized function start sequences. It then examines the register save
areas to display saved register values, etc...

The backtrace command has an optional sub-option that is an integer indicating
how many stack frames to display.

The backtrace command may be abbreviated as bt.

The where command is a synonym for backtrace.

break - set a break point

Specify a break point at an address. The break command accepts an argument that
indicates the address to use.

If the argument begins with *, then the following expression is evaluated to deter-
mine the address of the breakpoint.

If the argument begins with a digit, then it is taken to be the line number in the
source program of where to set the break point.

Otherwise, the argument is taken to be a symbol which should be the start of a
function for the break point.

For example:

break *$r12+240

sets a breakpoint at the address specified as 240(0,12).

break main

sets a breakpoint at the address specified by the symbol ”main”.

Breakpoints are added to the current breakpoint list. The breakpoint list can
be examined with the info breakpoints command, disabled with the disable
breakpoint command, enabled with the enable breakpoint command and re-
moved with the delete breakpoint command.

Multiple breakpoints can be added to a given location, which can be useful when
breakpoint conditions are also employed.

The break command may be abbreviated as b, br or brea.

6 Systems/DBG

condition - add a conditional test to a break point

The condition command adds an test expression to an existing breakpoint.

The condition command accepts up to two suboptions, the breakpoint number
and an optional debugger expression to evaluate. If no expression is provided, the
breakpoint is set to ”unconditional”, effectively removing any previous condition.

Normally, execution stops when the program reaches the address of a break point.
Such a breakpoint is called ”unconditional”.

If a conditional test is added to the breakpoint, when program execution reaches the
breakpoint, the expression is evaluated. If the expression is non-zero, the debugger
halts program execution; otherwise, the debugger continues program execution as if
the break point had not been present.

Note that multiple breakpoints can reside at the same location, each will be evalu-
ated in turn to determine if any conditions evaluate to a non-zero value.

continue - continue program execution

The continue command continues program execution after a break point has been
hit.

The continue command may be abbreviateed as c.

delete - delete an existing breakpoint or display items

The delete command will remove an existing breakpoint or display from the current
breakpoint or display list.

The delete command accepts a list of integer values indicating which breakpoint
or display to remove.

Before the list of values, the kind of item to be removed can be specified, with either
a "breakpoints" or "display" sub-option preceeding the list. "breakpoints" or
"display" may be abbreviated. If no sub-option is specified, "breakpoints" is
assumed.

If no list is specified, the entire list of current breakpoints or display items will be
deleted.

The delete command may be abbreviated as d.

The unset command is recognized as a synonym for delete.

Systems/DBG 7

disable - disable a list of breakpoints or display items

The disable command will mark a list of breakpoints, or display items as inactive.
The breakpoint or display remains in the list, but isn’t operating.

The disable command accepts a list of integer values indicating which breakpoint
or display to remove.

Before the list of values, the kind of item to be disabled can be specified, with either
a "breakpoints" or "display" sub-option preceeding the list. "breakpoints" or
"display" may be abbreviated. If no sub-option is specified, "breakpoints" is
assumed.

If no list is specified, the entire list of current breakpoints or display items will be
disabled.

The disable command may be abbreviated as disa or dis.

disassemble - disassemble program memory

The disassemble command has up to 2 expression arguments.

If no arguments are provided, the disassembly address is the current value of $pc.

If one argument is provided, it is the starting address for the disassembly.

If two arguments are provided, the first is the starting address and the second is the
ending address.

If no ending address is given, then the end is taken as the start plus 24 bytes.

Instructions are disassembled begining at the start address until the end address is
reached.

display - auto-display expressions

The display command automatically evaluates and displays an expression each
time the target program being debugged stops.

display accepts a single argument, the expression to display.

The display command can be decorated with a format indicator to override the
type of the value to print. The /FMT suffix on the display command is used to
specify the format. The value for FMT can be any of the types described in the x
(examine memory) command.

8 Systems/DBG

Items to display are added to the current display item list. The display item list
can be examined with the info display command, disabled with the disable
display command, enabled with the enable display command and removed with
the delete display command.

down - move earlier in the stack frame execution

The down command moves ”down” in the stack frame, toward frames that were
executed more recently than the current frame.

The down command accepts one sub option which is an integer indicating the number
of frames to move. If the option isn’t given, the default is 1 frame.

The down command may be abbreviated as do.

enable - enable a list of breakpoints or display items

The enable command will mark a list of breakpoints, or display items as active. A
previously inactive breakpoint or display item would then be operating.

The enable command accepts a list of integer values indicating which breakpoint
or display to remove.

Before the list of values, the kind of item to be enabled can be specified, with either
a "breakpoints" or "display" sub-option preceeding the list. "breakpoints" or
"display" may be abbreviated. If no sub-option is specified, "breakpoints" is
assumed.

If no list is specified, the entire list of current breakpoints or display items will be
enabled.

The enable command may be abbreviated as en.

file - name a program to debug

The file command names the program to debug. The debugger kernel DDBGK-
ERN can also provide the name of the program to debug on the DDBGKERN
command line.

The file command causes the remote kernel to load the desired program and pre-
pare it for execution in a debugging environment.

Systems/DBG 9

help - print out help on DDBG commands

The help command displays information about the DDBG commands. It can be
abbeviated as h.

info - provide machine and debugger state informtion

The info command displays information about the machine state of the program
debugged, or information about the debugger’s state. It accepts an argument that
indicates what information to display.

address Display the type and address of a symbol. If debugging information
has been loaded, this includes program symbols, otherwise it would
only include the LD and SD symbols from the loaded program. The
address sub-option may be abbreviated as addr.

all-registers Display the general registers, the floating-pt registers and $pswa,
$pswm and $pc.

breakpoints Display information about the currently set breakpoints.

display Display information about the currently set display items.

registers Display the general registers and the value of $pc.

stack Synonym for the backtrace command.

The info command may be abbreviated as i or inf.

list - list program source

The list command lists the source of the program being debugged.

If no options are given, an no previous list command was given, the lists the
source from the current program location in the current stack frame. If the previous
command was a list command, and no options are given, the list continues from
where it left off.

If an option is given, the debugger first tries to interpret it as a function name. If
the name matches a symbol from the debugging information, the source associated
with that function is listed.

If the option does not appear to be a symbol in the debugging information, the
debugger tries to interpret it in the format of “filename:linenum” and looks for the
line number from the given source file name.

10 Systems/DBG

Otherwise, the debugger tries to interpret the option as a line number within the
last visited source file.

The debugger will list 10 lines at a time.

The list command may be abbreviated as l.

next - step one source line, step over a function call

The next command single steps one source line; if the source has a function call,
the next command doesn’t enter the function.

nexti - step one machine instruction, step over a call

The nexti command single steps one machine instruction, unless that instruction
is a function call. In that case nexti will skip over the call.

print - display expression once

The print command evaluates an expression and displays its result. The result
is also stored in a numbered variable (i.e., $1) which can be used in subsequent
expressions.

By default, print command uses the type of the expression to format its result.
If the result of the expression is an array or a structure, print will print all the
members of the array or structure.

The print command can be decorated with a format indicator to override the type
of the value to print. The /FMT suffix on the print command is used to specify
the format. The value for FMT can be any of the types described in the x (examine
memory) command.

quit - exit the debugger

The quit command is used to end the debugging session. If connected to the remote
kernel DDBGKERN, quit will end the remote kernel and the debugger session.

The quit command may be abbreviated as q.

Systems/DBG 11

run - run the program

The run command starts execution of the program.

Any characters after the run command are taken as parameters to pass to the
program at program start-up.

The run command may be abbreviated as r.

set - set a target to a value

The set command is used to set a value in the memory of the target program
being debugged, the value of a floating point or general register, or the value of the
pswaorpc.

The set command is followed by an assignment statement of the format target=source,
where the target and source are debugger expression. The target expression must
be a value ”l-value” in terms of C syntax. The source is interpreted and its value is
retrieved.

For example, to set general registers #1 to the value 500, this command could be
used:

set $r1=500

The general C expression syntax is allowed in either target or source. For example,
to set the 4 byte integer at the offset addressed by general register #12 plus an
offset of 26 to the value 10, you can use:

set *((int *)($r12+26))=10

Similarly, if the target debug program had the integer variables i and j in scope at
the current location, then this command would set the variable i to the value of j
plus 13:

set i=j+13

shell - execute shell command

The shell command invokes the system’s standard interactive shell to execute the
command specified in the options.

On UNIX-style systems, if no options are specified a default interactive shell is
initiated.

The shell command may be abbreviated as sh.

12 Systems/DBG

step - step one source line

The step command single steps program execution one source line.

stepi - step one machine instruction

The stepi command single steps one machine instruction.

The stepi command may be abbreviated as si.

up - move later in the stack frame execution

The up command moves ”up” in the stack frame, toward frames that were executed
more after than the current frame.

The up command accepts one sub option which is an integer indicating the number
of frames to move. If the option isn’t given, the default is 1 frame.

x - examine memory

The x command examines memory. The produced output can be formatted accord-
ing to several options.

Formatting options on the x command are indicated by a slash / and a format
specification. The format specification is of the form nnnfes where nnn is an optional
count value (default 1), f is an optional format indicator (default “x”), e is an
optional encoding, and s is the size indicator (default “w”). The format indicators
are:

o octal

x hex

d decimal

u unsigned decimal

t binary

f float

a address

i instruction

c char

Systems/DBG 13

s string

The size indicators are:

b byte

h halfword (2 bytes)

w word (4 bytes)

g giant (8 bytes)

v very large (16 bytes)

The meaning of the encoding depends on which format is specified. For “f” (float)
format, the encoding can be either “h” (Hex Floating Point), “b” (Binary Floating
Point), or “d” (Decimal Floating Point). For “c” (char) or “s” (string) formats,
the encoding can be either “e” (EBCDIC, the default) or “a” (ASCII). For other
formats, there are no encoding choices.

The optional argument after the format specification is an expression indicating
the first address of memory to examine. If no argument is given, then the address
following a previous x command is used.

For example, to disassemble 10 instructions starting at the symbol ”main” this
command could be used:

x/10i main

whatis - display the type of an expression

The whatis command displays the type of the given debugger expression.

DDBG expressions

DDBG includes a C-like expression parser; expressions can be used as arguments
to the DDBG commands.

There are several pre-defined symbols that provide access to register values and
control over debugger settings.

14 Systems/DBG

Pre-defined names

The debugger includes these predefined names for the various registers:

$r0-$r15 General registers R0 thru R15.

$f0-$f15 Floating point registers F0 thru F15.

$pswa The PSW address value

$pswm The PSW mask values

$pc The PSW address expressed in the current execution AMODE.

Pre-defined aliases for the FP registers are also available with specific types. The pre-
fix can be h (IBM Hexadecimal Floating Point), b (IEEEE Binary Floating Point),
or d (Decimal Floating Point). An optional suffix species the size. No suffix indi-
cates 8 bytes, while a suffix of s (short) indicates 4 bytes, and l (long) indicates
16 bytes (referencing both registers of the register pair). For example, $bf4l would
reference the register pair of $f4 and $f6 as a 128-bit BFP value.

Arithmetic Constants

Integer constants are supported via C syntax; a prefix of 0x indicates a hex value; a
prefix of 0 indicates an octal value, otherwise the constant is taken to be an integer
constant.

Floating point constants are evaluated to the default floating point type values, the
size depending on the various constant suffixes. Currently, the default floating point
type is HFP (Hexadecimal Floating Point.)

Expressions

The debugger includes a C-like expression parser and evaluation engine. For exam-
ple, the expression:

$r13+128

evaluates to the current value in R13 plus 128.

The usual C expression operators, type casting, etc... can be used.

For example, to display memory at the address 256(10,12), this command could be
used:

Systems/DBG 15

x (256+$r10+$r12)

Similarly, to print the value of field ”myfield” in the structure ”mystruct”, simply:

print mystruct.myfield

Symbols from the target program can be directly used, just as they would be in
original program.

When searching for a symbol from the execution environment, the normal scoping
rules are employed. The debugger begins with the current stack frame and moves
”up” to previous stack frames looking for the symbol.

Symbol values are similarly retrieved based on the current stack frame in the target
program being debugged. The value of the general registers ($r0-$r15, $pswa and
$pc) is also stack frame specific.

The ”current” frame can be adjusted with the up and down commands.

Floating point operations are evaluated in 128-bit IEEE floating point values, re-
gardless of the type of the operands or the host platform. Operands in floating
point operations are converted to 128-bit IEEE floating point values, the operation
is performed, and if needed the value is converted to the target floating point format.
Thus, floating point operations in a DDBG may not produce exactly the result as
the program being debugged.

16 Systems/DBG

DDBG kernel

Initiating the kernel on z/OS

The DDBGKERN can be started either via TSO or BATCH by executing the
�DDBGKERN program. �DDBGKERN requires two options, the –hhostname and
–nportnumber where hostname and portnumber are provided by the DDBG user
interface.

DDBGKERN can also accept the name of the program to debug, and any parms
to pass to the program, for facilitating JCL.

DDBGKERN is a 64-bit program, and keeps much of its data above-the-bar to
make room more room for debugging 32-bit applications. There is also a 31-bit
version DDBGK31 which can be used if desired.

The debugger will need to write to your program code to set break points, etc...
because of this, the target program cannot be loaded into read-only virtual storage,
or the debugger will be unable to set breakpoints. Programs loaded from APF
authorized libraries with the RENT setting can be loaded into read-only virtual
storage. Programs running under OpenEdition are also loaded into read-only storage
unless the BPX PTRACE ATTACH environment variable is set to "yes".

Initiating the kernel under TSO

To initiate the kernel under TSO, simply invoke the program. Note that TSO will
make the parms upper-case by default, so the �ASIS option is required. For example:

READY
call dignus.load(DDBGKERN) ’-hmypc:2011’ asis

This will start the kernel, indicating it should connect to the host ”mypc” at port
number 2011. Both of these values are provided by the DDBG user interface when
it starts.

This example does not name a program to debug, so the DDBG file command
would be used to cause a program to be loaded for debugging.

Systems/DBG 17

Initiating the kernel under JCL

To alter JCL to debug in a batch session, simply replace the PGM= specification on
an EXEC statement to be DDBGKERN instead of the original program name. Then,
you can provide the program name and any options to pass to the program with the
PARM value on the DDBGKERN program.

For example, if your original JCL was to run the program MYPROG with the parameter
parm1:

//RUN EXEC PGM=MYPROG,PARM=(’parm1’)

then that would become:

//RUN EXEC PGM=DDBGKERN,PARM=’-hHHHH:####,-pparm1,MYPROG’

This invocation of DDBGKERN specifies the host option (HHHH) and the port
number (####) provided by the DDBG interface program. It then uses the –p
option to indicate the parameter ”parm1” is to be passed to the program to debug,
and then it names the MYPROG program as the one to debug.

When the DDBGKERN kernel connects to the the DDBG interface program; it
will pass the parameters and program name to DDBG which will then issue a file
command to set up the program to debug.

Initiating the kernel under OpenEdition

In the OpenEdition environment, to start the DDBGKERN kernel simply execute
they ddbgkern program with the appropriate arguments. For example:

ddbgkern -hmypc:2011

Note that when running under OpenEdition, the BPX PTRACE ATTACH environment
variable should be set to ”yes” to load the program into writable memory so it can
be debugged:

_BPX_PTRACE_ATTACH=yes
export _BPX_PTRACE_ATTACH

18 Systems/DBG

TCP/IP connection

The DDBG user interface begins the debugging session. When it starts, it displays
the host name on which it is running, and a port number to use for connection.
DDBG then waits on a TCP/IP connection from the debugging kernel program
DDBGKERN on the remote system.

DDBGKERN must be passed the host name and port number to use for the
connection.

If you would like a dedicated port number; then the –n option can be used on
the DDBG command to specify a particular port number, otherwise DDBG will
request an availabe port from the operating system.

This connection between DDBG and DDBGKERN requires a TCP/IP connec-
tion between the user workstation and the mainframe.

Kernel options

The DDBGKERN program can accept several options, optionally followed by the
name of the program to debug.

If a program name is provided, that name is communicated back to the DDBG
interface to indicate the name of the target program to debug. If a name is not
provided in the DDBGKERN arguments, the name can be provided by the file
command under the DDBG interface.

–hname Specify the host name, and optionally port number, of the DDBG
interface. The format of name is either hostname or hostname:portnumber.

That is, -hmypc:55555 is the same as -hmypc -n55555.

–nportnumber Specify the port number for the connection to the bf DDBG interface
if not provided in the –h option.

–pparms Provide a parameter string to use when the target programs begins.
This string will be communicated back to the bf DDBG interface
program and used at program start up.

Systems/DBG 19

20 Systems/DBG

ASCII/EBCDIC Translation
Table

The debugger, compiler and utilities use the following tables to translate characters
between ASCII and EBCDIC. These tables represent the mapping of the IBM Code
Page 1047 to ISO LATIN-1.

However, this is not the official IBM1047 mapping. The official mapping maps
EBCDIC X’15’ to LINEFEED X’85’ and maps EBCDIC X’25’ to NEWLINE X’0A’.
This is reversed from their traditional mappings. Some vendors use the traditional
mapping and some use the official mapping.

The debugger, compilers and utilities use the tradtitional mappings.

ASCII to EBCDIC

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA 4A B1 9F B2 6A B5 BB B4 9A 8A B0 CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC BA AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

Systems/DBG 21

EBCDIC to ASCII

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 A2 2E 3C 28 2B 7C

5 26 E9 EA EB E8 ED EE EF EC DF 21 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 A6 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 5B DE AE

B AC A3 A5 B7 A9 A7 B6 BC BD BE DD A8 AF 5D B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

22 Systems/DBG

	How To Use This Book
	Systems/DBG Overview
	DDBG User Interface
	Initiating DDBG
	DDBG options
	DDBG commands
	backtrace - display runtime stack information
	break - set a break point
	condition - add a conditional test to a break point
	continue - continue program execution
	delete - delete an existing breakpoint or display items
	disable - disable a list of breakpoints or display items
	disassemble - disassemble program memory
	display - auto-display expressions
	down - move earlier in the stack frame execution
	enable - enable a list of breakpoints or display items
	file - name a program to debug
	help - print out help on DDBG commands
	info - provide machine and debugger state informtion
	list - list program source
	next - step one source line, step over a function call
	nexti - step one machine instruction, step over a call
	print - display expression once
	quit - exit the debugger
	run - run the program
	set - set a target to a value
	shell - execute shell command
	step - step one source line
	stepi - step one machine instruction
	up - move later in the stack frame execution
	x - examine memory
	whatis - display the type of an expression

	DDBG expressions
	Pre-defined names
	Arithmetic Constants
	Expressions

	DDBG kernel
	Initiating the kernel on z/OS
	Initiating the kernel under TSO
	Initiating the kernel under JCL
	Initiating the kernel under OpenEdition

	TCP/IP connection
	Kernel options

	ASCII/EBCDIC Translation Table

